玉米-大豆带状套作对大豆根瘤性状和固氮能力的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Nodule Characteristics and Nitrogen Fixation of Soybean in Maize-Soybean Relay Strip Intercropping
  • 作者:于晓波 ; 苏本营 ; 龚万灼 ; 罗玲 ; 刘卫国 ; 杨文钰 ; 张明荣 ; 吴海英 ; 曾宪堂
  • 英文作者:YU Xiao-bo;SU Ben-ying;GONG Wan-zhuo;LUO Ling;LIU Wei-guo;YANG Wen-yu;ZHANG Ming-rong;WU Hai-ying;ZENG Xian-tang;College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest,Ministry of Agriculture;Nanchong Institute of Agricultural Sciences;Nanchong Bureau of Agriculture & Animal Husbandry;
  • 关键词:大豆 ; 带状套作 ; 根瘤 ; 固氮酶 ; 酰脲
  • 英文关键词:soybean;;relay strip intercropping;;nodule;;nitrogenase;;ureide
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:四川农业大学农学院/农业部西南作物生理生态与耕作重点实验室;四川省南充市农业科学院;四川省南充市农牧局;
  • 出版日期:2014-05-01
  • 出版单位:中国农业科学
  • 年:2014
  • 期:v.47
  • 基金:国家973计划项目(2011CB100402);; 农业部公益性行业科研专项(201203096)
  • 语种:中文;
  • 页:ZNYK201409009
  • 页数:11
  • CN:09
  • ISSN:11-1328/S
  • 分类号:93-103
摘要
【目的】研究玉米-大豆带状套作系统中大豆生物量积累、根瘤特性、固氮酶活性和植株酰脲含量与固氮能力间的关系,明晰套作根系固氮能力的变化规律,为筛选适宜玉米-大豆带状套作的大豆品种提供理论依据。【方法】以强结瘤大豆NTS1007及其亲本BRAGG和本地耐荫大豆南豆12三个结瘤特性不同的大豆品种(系)为试验材料,在大田试验条件下,采用传统挖掘法挖根考察根瘤生长特性,并对玉豆带状套作下的大豆地上部与地下部生物量积累、根瘤固氮酶活性和植株酰脲含量进行测定和分析。【结果】与单作相比,玉豆带状套作下大豆植株生物量显著下降,地下部(33.15%)较地上部(20.84%)下降更为明显,根瘤生物量受地上部和地下部的共同调控(R2=0.613、0.916);大豆根瘤数目、单株瘤重和酰脲含量均显著下降,根瘤数目与地下部生物量呈显著正相关(R2=0.813);单位重量和单株固氮酶活性均显著下降,在达到峰值后下降速度均小于单作;单株固氮酶活性增长速率最快的时间滞后于单作。不同结瘤特性大豆对玉豆带状套作的响应不同,玉豆带状套作下NTS1007单株根瘤数目最多,但与单作相比其降幅最大(52.42%),BRAGG地下部和地上部生物量、根瘤重量下降幅度最大(37.73%、31.28%、43.25%),南豆12的根瘤数目、地上部和地下部生物量、根冠比的降幅均为最小(40.12%、10.17%、19.83%、10.41%);玉豆带状套作下NTS1007的单株固氮酶活性和单位重量酰脲含量降幅最大(64.41%、21.72%),BRAGG的单位重量固氮酶活性降幅最大(24.16%),南豆12的单位重量和单株固氮酶活性、单株酰脲含量均表现为最高,且降幅最小(10.01%、45.81%、17.88%)。【结论】玉豆带状套作显著降低了大豆地上部、地下部生物量和根冠比,减少了单株根瘤数目,降低了单位重量根瘤和单株固氮酶活性,抑制了大豆固氮能力的发挥。但生殖生长后期固氮能力下降速度低于单作,这有利于套作大豆籽粒蛋白质的积累。不同结瘤特性大豆对套作的响应不同,强结瘤大豆NTS1007的地上部干物质积累和地下根瘤形成对套作环境反应敏感,南豆12则对玉豆带状套作表现出了良好的适应性。
        【Objective】Shoot and root biomass, nodule characteristics, nitrogenase reductive ability and ureide content were studied to investigate the biological nitrogen fixation of soybean under relay-intercropping system.【Method】Three varieties, super-nodulating mutant NTS1007, BRAGG and ND12, were used in this field experiment to investigate the growth characteristics of root nodule, nodule nitrogenase reductive ability and ureide content of plant as well as root and shoot biomass accumulation. 【Result】Compared with monoculture, the results showed that root and shoot biomass decreased significantly in relay strip intercropping system. Nodule biomass was regulated by shoot and root, however, nodule number was correlated with the root biomass. The decreasing amplitude of root biomass(33.15%) was higher than that of shoot(20.84%) in relay strip intercropping system, as a result, the root/shoot ratio was decreased significantly. Furthermore, the nodule nitrogenase reductive ability and the ureide content of plant were also decreased significantly. Compared with monoculture, nitrogenase ability per plant and per weight all decreased, and the declining speed was slower after peak value. The fastest increasing stage of nitrogenase ability per plant came later. Among the three soybean varieties, NTS1007(52.42%) had a bigger decreasing amplitude in nodule number than others, BRAGG had the biggest decreasing amplitude in root biomass, shoot biomass and nodule weight(37.73%, 31.28%, 43.25%). In maize-soybean relay strip intercropping system, NTS1007 had the biggest decreasing amplitude in nitrogenase activity per plant and ureide content per weight(64.41%, 21.72%), as well as the nitrogenase activity per weight of BRAGG(21.46%), nitrogenase activity and ureide content per plant of ND12 was higher than that of NTS1007 and BRAGG, but the decreasing amplitude compared to monoculture was the lowest among the three soybean varieties(10.01%, 45.81%, 17.88%).【Conclusion】In relay strip intercropping system, shoot biomass, root biomass and root/shoot ratio decreased significantly, as well as the nodule number and nitrogenase ability. The declining speed of nitrogen fixing ability was slower, and this will be favorable to protein accumulation. The decreasing amplitude was different among the three soybean varieties. The biomass accumulation and nodule formation of super-nodulating mutant NTS1007 were sensitive to relay strip intercropping system, but ND12 showed a better adaptability.
引文
[1]Thrupp L A.Linking agricultural biodiversity and food security:The valuable role of agrobiodiversity for sustainable agriculture.International Affairs,2000,76(2):265-281.
    [2]Szumigalski A R,Van Acker R C.Nitrogen yield and land use efficiency in annual sole crops and intercrops.Agronomy Journal,2006,98(4):1030-1040.
    [3]Gao Y,Duan A W,Qiu X Q,Liu Z G,Sun J S,Zhang J P,Wang H Z.Distribution of roots and root length density in a maize/soybean strip intercropping system.Agricultural Water Management,2010,98(1):199-212.
    [4]Shennan C.Biotic interactions,ecological knowledge and agriculture.Philosophical Transactions of the Royal Society B:Biological Sciences,2008,363(1492):717-739.
    [5]叶优良,孙建好,李隆,张福锁.小麦/玉米间作根系相互作用对氮素吸收和土壤硝态氮含量的影响,农业工程学报,2005,21(11):33-37.Ye Y L,Sun J H,Li L,Zhang F S.Effect of wheat/maize intercropping on plant nitrogen uptake and soil nitrate nitrogen concentration.Transactions of the CSAE,2005,21(11):33-37.(in Chinese)
    [6]雍太文,杨文钰,任万军,樊高琼,牟锦毅.发展套作大豆,促进四川大豆产业发展.作物杂志,2007,6:5-8.Yong T W,Yang W Y,Ren W J,Fan G Q,Mu J Y.Develop realy-planting soybean,promote soybean industry of Sichuan.Crop Science,2007,6:5-8.(in Chinese)
    [7]杨文钰,雍太文,任万军,樊高琼,牟锦毅,卢学兰.发展玉米套种大豆,振兴大豆产业.大豆科学,2008,27(1):1-7.Yang W Y,Yong T W,Ren W J,Fan G Q,Mu J Y,Lu X L.Develop realy-planting soybean,revitalize soybean industry.Soybean Science,2008,27(1):1-7.(in Chinese)
    [8]McClure P R,Israel D W.Transport of nitrogen in the xylem of soybean plants.Plant Physiology,1979,64(3):411-416.
    [9]Kouchi H,Yoneyama T.Dynamics of carbon photosynthetically assimilated in nodulated soya plants grown under steady state conditions.Annals Botany of Company,1984,53(6):883-896.
    [10]房春红,陈秀双,刘杰,许修宏.大豆固氮酶活性与酰脲含量的关系.东北农业大学学报,2008,39(3):9-12.Fang C H,Chen X S,Liu J,Xu X J.Relation between ureide content and nitrogenase activity in soybean.Journal of Northeast Agricultural University,2008,39(3):9-12.(in Chinese)
    [11]刘业丽,孙聪姝,刘丽君,陈丽华,祖伟.不同基因型大豆植株酰脲含量的动态规律,东北农业大学学报,2007,38(1):5-8.Liu Y L,Sun C S,Liu Y L,Chen L H,Zu W.Study on dynamic regulation of ureides content in soybean plants among different genotypes.Journal of Northeast Agricultural University,2007,38(1):5-8.(in Chinese)
    [12]宋海星,王萍,申斯乐,闫石,陶丹,冉彦中.大豆共生固氮与叶片全氮含量之间关系的研究.吉林农业科学,2000,25(6):9-11.Song H X,Wang P,Shen S L,Yan S,Tao D,Ran Y Z.Study on the ralations between commensally nitrogen fixation and the total nitrogen content of leaves in soybean.Journal of Jilin Agricultural Sciences,2000,25(6):9-11.(in Chinese)
    [13]董守坤,马春梅,李姚,金喜军,龚振平.大豆植株中酰脲含量变化动态研究.东北农业大学学报,2005,36(5):549-552.Dong S K,Ma C M,Li Y,Jin X J,Gong Z P.Study on the change of ureides content in soybean plant.Journal of Northeast Agricultural University,2005,36(5):549-552.(in Chinese)
    [14]Ofosu-Budu G K,Sumiyoshi D,Matsuura H,Fujita K.Significance of soil N on dry matter production and N balance in soybean/sorghum mixed cropping system.Soil Science and Plant Nutrition,1993,39(1):33-42.
    [15]Tobita S,Ito R,Matsunaga T,Rao T P,Rego T J,Johansen C,Yoneyama T.Field evaluation of nitrogen fixation and use of nitrogen fertilizer by sorghum/pigeonpea intercropping on an Alfisol in the Indian semi-arid tropics.Biology Fertility Soil,1994,17(4):241-248.
    [16]左元梅,刘永秀,张福锁.玉米/花生混作改善花生铁营养对花生碳氮代谢及固氮的影响.生态学报,2004,24(11):2584-2590.Zuo Y M,Liu Y X,Zhang F S.Effects of improved iron nutrition of peanut intercropped with maize on carbon and nitrogen metabolism and nitrogen-fixing of peanut nodule.Acta Ecologica Sinica,2004(11):2584-2590.(in Chinese)
    [17]房增国,左元梅,李隆,张福锁.玉米-花生混作体系中不同施氮水平对花生铁营养及固氮的影响.植物营养与肥料学报,2004,10(4):386-390.Fang Z G,Zuo Y M,Li L,Zhang F S.Effects of different nitrogen levels on iron nutrition and nitrogen fixation of peanut in maize-peanut mixed cropping system.Plant Nutrition and Fertilizer Science,2004,10(4):386-390.(in Chinese)
    [18]范淑琴,梁淑文.现代植物生理学实验指南.北京:科学出版社,1999:174-175.Fan S Q,Liang S W.Experiment Instruction of Modern Plant Physiology,Beijing:Science Press,1999:174-176.(in Chinese)
    [19]徐志伟,刘承宪.豆科植物中酰脲含量的测定.植物生理学通讯,1986,4:60-62.Xu Z W,Liu C X.Measurement of ureides from legume tissue.Plant Physiology Communications,1986,4:60-62.(in Chinese)
    [20]Schultze M,Kondorosi A.Regulation of symbiotic root nodule development.Genetics,1998,32(1):33-57.
    [21]周相娟,梁宇,沈世华,荆玉祥.接种根瘤菌和遮光对大豆固氮和光合作用的影响.中国农业科学,2007,40(3):478-484.Zhou X J,Liang Y,Shen S H,Jing Y X.Effects of rhizobial inoculation and shading on nitrogen fixation and photosynthesis of soybean.Scientia Agricultura Sinica,2007,40(3):478-484.(in Chinese)
    [22]王晓云,夏明忠,华劲松.不同时期遮光对蚕豆根瘤生长及产量的影响.西昌学院学报,2007,21(2):28-31.Wang X Y,Xia M Z,Hua J S.Effects of shading at different growth stages on nodule and grain yield in faba bean.Journal of Xichang College,2007,21(2):28-31.(in Chinese)
    [23]王竹,杨文钰,伍晓燕,吴其林.玉米株型和幅宽对套作大豆初花期形态建成及产量的影响.应用生态学报,2008,19(2):329-323.Wang Z,Yang W Y,Wu X Y,Wu Q L.Effects of maize plant type and planting width on the early morphological characters and yield of relayplanted soybean.Chinese Journal of Applied Ecology,2008,19(2):323-329.(in Chinese)
    [24]刘卫国,蒋涛,佘跃辉,杨峰,杨文钰.大豆苗期茎秆对荫蔽胁迫响应的生理机制初探.中国油料作物学报,2011,33(2):141-146.Liu W G,Jiang T,She Y H,Yang F,Yang W Y.Preliminary study on physiological response mechanism of soybean(Glycine max)stem to shade stress at seedling stage.Chinese Journal of Soil Crop Science,2011,33(2):141-146.(in Chinese)
    [25]Sayuri I,Norikuni O,Kuni S.Allocation of photosynthetic products in soybean during the early stages of nodule formation.Soil Science and Plant Nutrition,2006,52(4):438-443.
    [26]Bourion V,Laguerre G,Depret G,Vosin A S,Salon C,Duc G.Genetic variability in nodulation and root growth affects nitrogen fixation and accumulation in pea.Annals Botany,2007,100(3):589-598.
    [27]Voisin A S,Munier-Jolain N G,Salon C.The nodulation process is tightly adjusted to plant growth.An analysis using environmentally and genetically induced variation of nodule number and biomass in pea.Plant Soil,2010,337(1):399-412.
    [28]Carroll B J,McNeil D L,Gresshoff P M.Isolation and properties of soybean mutants that nodulate in the presence of high nitrate concentrations.Proceeding of National Academy of Sciences of the USA,1985,82(12):4162-4166.
    [29]Sprent J I,Stephens J H,Rupela O P.Environmental effects on nitrogen fixation.World Crops:Cool Season Food Legumes,1988,5:801-810.
    [30]Voisin A S,Salon C,Jeudy C,Warembourg F R.Seasonal patterns of13C partitionning between shoot and nodulated roots of N2-or nitrate fed-Pisum sativum L.Annals Botany,2003,91(5):539-546.
    [31]宋艳霞,杨文钰,李卓玺,于晓波,郭凯,向达兵.不同大豆品种幼苗叶片光合及叶绿素荧光特性对套作遮荫的响应.中国油料作物学报,2009,31(4):474-479.Song Y X,Yang W Y,Li Z X,Yu X B,Guo K,Xiang D B.The effects of shading on photosynthetic and fluorescent characteristics of soybean seedlings under maize-soybean relay cropping.Chinese Journal of Soil Crop Science,2009,31(4):474-479.(in Chinese)
    [32]Atkins C A,Fernando M,Hunt S,Layzell D B.A metabolic connection between nitrogenase activity and the synthesis of ureides in nodulated soybean.Physiologia Plantarum,1992,84(3):441-447.
    [33]Mastrodomenico A T,Purcell L C,King C A.The response and recovery of nitrogen fixation activity in soybean to water deficit at different reproductive developmental stages.Enviromental and Experimental Botany,2013,85:16-21.
    [34]Gil-Quintana E,Larrainza E,Seminario A,Diaz-Leal J L,Alamillo J M,Pineda M,Arrese-lgor C,Wienkoop S,Gonzalez E M.Local inhibition of nitrogen fixation and nodule metabolism in droughtstressed soybean.Journal of Experimental Botany,2013,64(8):2172-2182.
    [35]Jung G,,Toshinori M,Yukihiko O,Makie K.Effects of waterlogging on nitrogen fixation and photosynthesis in supernodulating soybean cultivar Kanto 100.Plant Production Science,2008,11(3):291-297.
    [36]Imsande J,Touraine B N.Demand and the regulation of nitrate uptake.Plant Physiology,1994,105:3-7.
    [37]金喜军,马春梅,龚振平,姚玉波,邸伟.大豆鼓粒期对肥料氮的吸收与分配研究.植物营养与肥料学报,2010,16(2):395-399.Jin X J,Ma C M,Gong Z P,Yao Y B,Di W.Study on fertilizer-N absorption and distribution of soybean during the seed-filling period.Plant Nutrition and Fertilizer Science,2010,16(2):395-399.(in Chinese)
    [38]邸伟,金喜军,马春梅,龚振平,董守坤,张磊.施氮水平对大豆氮素积累与产量影响的研究,核农学报,2010,24(3):612-617.Di W,Jin X J,Ma C M,Gong Z P,Dong S K,Zhang L.Effects of nitrogen application on yield and nitrogen accumulation in soybean.Journal of Nuclear Agricultural Sciences,2010,24(3):612-617.(in Chinese)
    [39]Gadimov A G,Safaraliev P M.Change in nitrogen status of soybean under influence of symbiotically fixed and bound nitrogen.Turkish Journal of Agriculture and Forestry,1999,23:389-392.
    [40]Mengel R.Symbiotic dinitrogen fixation-its dependence on plant nutrition and its ecophysiological impact.Zeitschrift für Pflanzenern?hrung und Bodenkunde,1994,157(3):233-241.
    [41]Sato T,Onoma N,Fujikake H.Changes in four leghemoglobin components in nodules of hypernodulating soybean(Glycine max Merr.)mutant and its parent in the early nodule developmental stage.Plant Soil,2001,237(1):129-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700