人工湿地基质组合去除氨氮方案筛选及影响因素的动力学分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Screening of ammonia nitrogen removal schemes from construct wetland matrix and dynamic analysis of influencing factors
  • 作者:赵东源 ; 张生 ; 赵胜男 ; 赵育军 ; 田伟东 ; 刘晶晶
  • 英文作者:ZHAO Dongyuan;ZHANG Sheng;ZHAO Shengnan;ZHAO Yujun;TIAN Weidong;LIU Jingjing;Water Resources and Civil Engineering College,Inner Mongolia Agricultural University;Urban and Rural Overall Development Bureau of Airport New City of Xixian New Area;
  • 关键词:人工湿地 ; 基质组合 ; 氨氮去除率 ; 动力学分析 ; 等温吸附方程
  • 英文关键词:constructed wetland;;substrate combinations;;ammonia nitrogen removal;;kininetics analysis;;isothermal adsorption equation
  • 中文刊名:XBSZ
  • 英文刊名:Journal of Water Resources and Water Engineering
  • 机构:内蒙古农业大学水利与土木建设工程学院;西咸新区空港新城城乡统筹发展局;
  • 出版日期:2018-08-15
  • 出版单位:水资源与水工程学报
  • 年:2018
  • 期:v.29;No.140
  • 基金:国家自然科学基金项目(51569019、51509133、51339002、51669022);; 内蒙古乌梁素海湿地生态站项目
  • 语种:中文;
  • 页:XBSZ201804020
  • 页数:6
  • CN:04
  • ISSN:61-1413/TV
  • 分类号:124-129
摘要
采用等温吸附方程对6种基质吸附氨氮的能力进行筛选,并将效果较优的3种材料组合成人工湿地基质试样,通过筛选实验和不同因素影响下的动力学实验,得到不同组合基质的氨氮去除效果,分析不同温度、进水浓度和粒径下的动力学特征。结果表明:沸石、生物陶粒和石灰石质量比在3∶1∶1时除氨氮效果最优,吸附量达到283.814 mg/kg,去除率为94.61%。随着温度增高,氨氮吸附量减小。进水浓度的增加虽然可以增加吸附量,但会降低吸附效率。改变粒径对吸附量有一定影响,但并不显著。从相关系数来看,准二级比一级动力学能更好地模拟基质吸附氨氮的过程,在估算改变温度对平衡吸附量影响时,一级动力学估算更为准确,在改变进水浓度和粒径时,二级动力学较优。
        The isothermal adsorption equation was applied to screen the adsorption capacities of ammonia nitrogen of six substrates,three of which with the best adsorbability were selected and mixed with different ratios for the base of constructed wetlands.Adsorption kinetics experiments were carried out on remove ammonia nitrogen of the substrates under the different effect factors of temperature,initial concentration,and particle size.The removal efficiencies of ammonia nitrogen of different substrate combinations were tested,which were mixed in different ratios of the selected materials.The results showed that the best removal efficiency was at the ratio of 3∶1∶1(zeolite∶bio-ceramic∶limestone),at which the adsorption capacity reached 283.814 mg/kg with a removal rate of 94.61%.Meanwhile,the adsorption amount of ammonia nitrogen decreased with increase of the test temperature.Although the increase of influent load could raise the adsorption amount,the adsorption efficiency decreased.The adsorption amount did not significantly vary with the particle size distribution.The correlation coefficient showed that the adsorption processes of ammonia nitrogen were better simulated by the quasi-second-order kinetics than the first-order kinetics.When estimating the influence of temperature on the amount of equilibrium adsorption,the first-order kinetic estimation was more accurate;however,the quasi-second-order kinetics was better when the influent load and particle size were changed.
引文
[1]付春平,钟成华,邓春光.水体富营养化成因分析[J].重庆建筑大学学报,2005,27(1):128-131.
    [2]陈丽丽,张成军,李鹏,等.人工湿地不同基质对氨氮的吸附特性研究[J].生态环境学报,2012,21(3):518-523.
    [3]张一帆,王爱杰,程浩毅.生物电化学系统在废水脱氮中的应用研究进展[J].水处理技术,2017,43(10):54-59.
    [4]刘亚敏,郝卓莉.高氨氮废水处理技术及研究现状[J].水处理技术,2012,38(S1):7-11.
    [5]卢少勇,万正芬,李锋民,等.29种湿地填料对氨氮的吸附解吸性能比较[J].环境科学研究,2016,29(8):1187-1194.
    [6]崔芳.进水浓度对人工湿地净化城市湖泊水体影响研究[J].水资源与水工程学报,2010,21(3):101-103.
    [7]JAMSHIDI S,AKBARZADEH A,WOO K S,et al.Wastewater treatment using integrated anaerobic baffled reactor and Bio-rack wetlandplanted with Phragmites sp.and Typha sp.[J].Iranian Journal of Environmental Health Science&Engineering,2014,12(1):131-143.
    [8]PALFY T G,LANGERGRABER G.The verification of the constructed wetland model No.1 implementation in HYDRUS using column experiment data[J].Ecological Engineering,2014,68(7):105-115.
    [9]孙桂琴,董瑞斌,潘乐英.人工湿地污水处理技术及其在我国的应用[J].环境科学与技术,2006,29(S1):144-146+150.
    [10]PELISSARI C,SANTOS M O D,ROUSSO B Z,et al.Organic load and hydraulic regime influence over the bacterial community responsible for the nitrogen cycling in bed media of vertical subsurface flow constructed wetland[J].Ecological Engineering,2016,95:180-188.
    [11]刘志寅,尤朝阳,肖晓强,等.人工湿地填料除磷影响因素研究[J].水处理技术,2011,37(10):50-54+59.
    [12]熊家晴,赵泽宁,葛媛,等.不同基质垂直流人工湿地对高污染河水中磷的去除效果[J].环境化学,2014,33(7):1208-1213.
    [13]张亮,邹长武,田筱,等.人工湿地基质对NH+4—N吸附性能[J].环境工程学报,2014,8(1):198-202.
    [14]张燕,庞南柱,蹇兴超,等.3种人工湿地基质吸附污水中氨氮的性能与基质筛选研究[J].湿地科学,2012,10(1):87-91.
    [15]武轩韵,孙向阳,栾亚宁,等.5种基质对污水中氨氮的去除效果筛选及研究[J].水处理技术,2015,41(2):52-55.
    [16]徐丽华,周琪.不同填料人工湿地处理系统的净化能力研究[J].上海环境科学,2002,21(10):603-605+644.
    [17]李丽,王全金,李忠卫.四种填料对总磷的静态吸附试验研究[J].华东交通大学学报,2009,26(4):39-43.
    [18]王万军,邵聚红,赵彦巧.天然沸石在环境污染治理中的研究现状与发展趋势[J].资源环境与工程,2007,21(2):187-192.
    [19]ROZIC M,CERJAN-STEFANOVIC S,KURAJICA S,et al.Ammoniacal nitrogen removal from water by treatment with clays and zeolites[J].Water Research,2000,34(14):3675-3681.
    [20]孙金昌.斜发沸石去除高温凝结水中铁离子的性能研究[D].大连:大连理工大学,2012.
    [21]REDDY G B,FORBES D A,PHILLIPS R,et al.Demonstration of technology to treat swine waste using geotextile bag,zeolite bed and constructed wetland[J].Ecological Engineering,2013,57(4):353-360.
    [22]李日强,李松桧,王江迪.沸石的活化及其对水中氨氮的吸附[J].环境科学学报,2008,28(8):1618-1624.
    [23]游少鸿,佟小薇,朱义年.天然沸石对氨氮的吸附作用及其影响因素[J].水资源保护,2010,26(1):70-74.
    [24]李金辉,周涛,曾超,等.泡沫混凝土对模拟氨氮废水的吸附[J].环境工程学报,2017,11(8):4718-4724.
    [25]许冉冉,张新颖,李杰.天然斜发沸石吸附NH+4特性与改性吸附研究[J].净水技术,2014,33(S2):60-64+68.
    [26]莫文锐,黄建洪,田森林,等.氨氮与磷在三种人工湿地填料上的吸附动力学[J].化学研究,2012,23(1):21-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700