藻-菌系统中微藻生长条件的响应面法优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of culture conditions of microalgae in an algal-bacterial system by response surface method
  • 作者:罗龙皂 ; 曾凡健 ; 田光
  • 英文作者:LUO Longzao;ZENG Fanjian;TIAN Guangming;School of Chemistry and Environmental Science,Shangrao Normal University;College of Environmental and Resource Sciences,Zhejiang University;
  • 关键词:微藻 ; 藻-菌系统 ; 培养条件 ; 响应面法 ; 优化
  • 英文关键词:microalgae;;algal-bacterial system;;culture condition;;response surface method;;optimization
  • 中文刊名:ZJNY
  • 英文刊名:Journal of Zhejiang University(Agriculture and Life Sciences)
  • 机构:上饶师范学院化学与环境科学学院;浙江大学环境与资源学院;
  • 出版日期:2019-02-25
  • 出版单位:浙江大学学报(农业与生命科学版)
  • 年:2019
  • 期:v.45;No.212
  • 基金:国家水体污染控制与治理科技重大专项(2014ZX07101-012);; 江西省上饶市科技支撑计划(18C011)
  • 语种:中文;
  • 页:ZJNY201901014
  • 页数:7
  • CN:01
  • ISSN:33-1247/S
  • 分类号:101-107
摘要
人工构建藻-菌系统,探讨培养系统密闭情况及搅拌速率、藻-菌初始接种比例和废水有机负荷对系统中微藻生长的影响。在单因素试验结果的基础上,利用响应面法对搅拌速率、藻-菌初始接种比例和废水有机负荷3个因素进行优化。结果表明,培养系统密闭情况及搅拌速率、藻-菌初始接种比例和废水有机负荷均显著影响系统中微藻的生长,其中培养系统敞开更有利于微藻的生长。经响应面优化的最佳培养条件为:搅拌速率1 574.29 r/min,菌-藻接种比例150∶1,有机负荷(以化学需氧量计)3 676.02 mg/L。在此条件下培养7 d后,微藻的生物量为5.68 g/L,与理论预测值(5.69 g/L)基本吻合。本研究结果可为提高藻-菌系统对废水的资源化利用效率提供科学依据。
        An algal-bacterial system was constructed to explore the effects of culture conditions on the growth of microalgae. On the basis of the results of single factor test, three factors including the agitating rate, the initial inoculation ratio of microalgae and bacteria, and the organic load of the wastewater were optimizated by using the response surface method. The results showed that the microalgal growth was significantly affected by airtight condition, agitation rate, initial inoculation ratio and organic load of the culture system, and the microalgae grew better in the open culture system. The optimum condition by the response surface optimization was as follows:agitating rate of 1 574.29 r/min, inoculation ratio 150∶1 of bacteria-alga and organic load(chemical oxygen demand, COD) of 3 676.02 mg/L. After seven days of culture under the optimimum condition, the biomass of microalgae was 5.68 g/L, which was in accordance with the theoretically predicted value(5.69 g/L). The above results can lay a scientific basis for improving the resource recovery efficiency from wastewater by algalbacterial system.
引文
[1]PRAGYA N,PANDEY K K,SAHOO P K.A review on harvesting,oil extraction and biofuels production technologies from microalgae.Renewable&Sustainable Energy Reviews,2013,24(10):159-171.
    [2]赵立欣,宋成军,董保成,等.基于微藻养殖的沼液资源化利用与高价值生物质生产耦合技术研究.安全与环境学报,2012,12(3):61-65.ZHAO L X,SONG C J,DONG B C,et al.On the microalgae cultivation based coupling of biogas fermentative liquid-resource utilization and high-quality biomass production.Journal of Safety and Environment,2012,12(3):61-65.(in Chinese with English abstract)
    [3]李超,冯玉杰,张大伟,等.以市政污水为底物的微藻油脂积累和碳流分析.可再生能源,2012,30(6):93-96.LI C,FENG Y J,ZHANG D W,et al.Microalgae lipid accumulation and carbon flux analysis based on municipal wastewater used as medium.Renewable Energy Resources,2012,30(6):93-96.(in Chinese with English abstract)
    [4]程海翔.一株栅藻的分离培养及其应用于养猪废水处理的潜力研究.杭州:浙江大学,2013.CHENG H X.Research on isolation and cultivation of a new microalgae and the potential of its application for treating piggery wastewater.Hangzhou:Zhejiang University,2013.(in Chinese with English abstract)
    [5]PRANDINI J M,DA S M,MEZZARI M P,et al.Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp.Bioresource Technology,2015,202:67-75.
    [6]WANG Y,GUO W Q,YEN H W,et al.Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production.Bioresource Technology,2015,198:619-625.
    [7]WANG J H,ZHANG T Y,DAO G H,et al.Microalgaebased advanced municipal wastewater treatment for reuse in water bodies.Applied Microbiology and Biotechnology,2017,101(7):1-17.
    [8]RIEDEL T E,BERELSON W M,NEALSON K H,et al.Oxygen consumption rates of bacteria under nutrient-limited conditions.Applied and Environmental Microbiology,2013,79(16):4921-4931.
    [9]GUO Z,TONG W Y.The interactions between Chlorella vulgaris and algal symbiotic bacteria under photoautotrophic and photoheterotrophic conditions.Journal of Applied Phycology,2014,26(3):1483-1492.
    [10]RAMANAN R,KIM B H,CHO D H,et al.Algae-bacteria interactions:evolution,ecology and emerging applications.Biotechnology Advances,2016,34(1):14-29.
    [11]SUBASHCHANDRABOSE S R,RAMAKRISHNAN B,MEGHARAJ M,et al.Consortia of cyanobacteria/microalgae and bacteria:biotechnological potential.Biotechnology Advances,2011,29(6):896.
    [12]RISGAARDPETERSEN N,NICOLAISEN M H,REVSBECH N P,et al.Competition between ammoniaoxidizing bacteria and benthic microalgae.Applied and Environmental Microbiology,2004,70(9):5528-5537.
    [13]CHENG H X,TIAN G M.Identification of a newly isolated microalga from a local pond and evaluation of its growth and nutrients removal potential in swine breeding effluent.Desalination and Water Treatment,2013,51(13/14/15):2768-2775.
    [14]WATANABE K,TAKIHANA N,AOYAGI H,et al.Symbiotic association in Chlorella culture.FEMS Microbiology Ecology,2005,51(2):187-196.
    [15]王瑞民.栅藻(Scenedesmus obliquus)藻菌共生体系的构建及调控.北京:中国科学院大学,2015.WANG R M.Construction and regulation of artificial consortia of Scenedesmus obliauus and microorganism.Beijing:University of Chinese Academy of Science,2015.(in Chinese with English abstract)
    [16]郭艳梅.新型藻菌生物转盘反应器的研制.哈尔滨:哈尔滨工业大学,2010.GUO Y M.Development of novel algal-bacterial symbiotic rotating biological contactor.Harbin:Harbin Institute of Technology,2010.(in Chinese with English abstract)
    [17]WATANABE Y.Design and experimental practice of photobioreactor incorporating microalgae for efficient photosynthetic CO2fixation performance.Studies in Surface Science and Catalysis,2004,153:445-452.
    [18]SHU C H,TSAI C C,CHEN K Y,et al.Enhancing high quality oil accumulation and carbon dioxide fixation by a mixed culture of Chlorella sp.and Saccharomyces cerevisiae.Journal of the Taiwan Institute of Chemical Engineers,2013,44(6):936-942.
    [19]CAMACHO F G,GóMEZ A C,SOBCZUK T M,et al.Effects of mechanical and hydrodynamic stress in agitated,sparged cultures of Porphyridium cruentum.Process Biochemistry,2000,35(9):1045-1050.
    [20]BERDALET E.Effects of turbulence on the marine dinoflagellate Gymnodinium nelsonii.Journal of Phycology,2004,28:267-272.
    [21]SULLIVAN J M,SWIFT E,DONAGHAY P L,et al.Smallscale turbulence affects the division rate and morphology of two red-tide dinoflagellates.Harmful Algae,2003,2(3):183-199.
    [22]HONDZO M,LYN D.Quantified small-scale turbulence inhibits the growth of a green alga.Freshwater Biology,1999,41(1):51-61.
    [23]SULLIVAN J M,SWIFT E.Effects of small-scale turbulence on net growth rate and size of ten species of marine dinoflagellates.Journal of Phycology,2003,39(1):83-94.
    [24]沈宏,周培疆.环境有机污染物对藻类生长作用的研究进展.水生生物学报,2002,26(5):529-535.SHEN H,ZHOU P J.Advance in the studies on effect of environmental organic pollutants on the algae growth.Acta Hydrobiologica Sinica,2002,26(5):529-535.(in Chinese with English abstract)
    [25]PERONA E,MARCO E,ORúS M I.Alteration of dinitrogen fixation and metabolism in cyanobacterium Anabaena PCC 7119 by phosph amidon.Environmental and Experimental Botany,1991,31(4):479-488.
    [26]唐学玺,李永祺.对硫磷对三角褐指藻核酸和蛋白质合成动态的影响.生态学报,2000,20(4):598-600.TANG X X,LI Y Q.The effect of parathion on the synthesis of protein and nucleic acid in Phaeodactylum tricornutum.Acta Ecological Sinica,2000,20(4):598-600.(in Chinese with English abstract)
    [27]谢荣,唐学玺,李永祺,等.丙溴磷影响海洋微藻生长机制的初步研究.环境科学学报,2000,20(4):473-477.XIE R,TANG X X,LI Y Q,et al.Preliminary study on mechanism of profenofos on marine microalgae proliferation.Acta Scientiae Circumstantiae,2000,20(4):473-477.(in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700