纤维素基功能材料
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cellulose-based Functional Materials
  • 作者:杜开峰 ; 乔亮智
  • 英文作者:DU Kaifeng;QIAO Liangzhi;College of Chemical Eng.,Sichuan Univ.;
  • 关键词:资源开发 ; 纤维素微球 ; 凝胶材料 ; 吸附分离 ; 智能诊断
  • 英文关键词:resource development;;cellulose beads;;cellulose hydrogel;;separation;;diagnosis
  • 中文刊名:SCLH
  • 英文刊名:Advanced Engineering Sciences
  • 机构:四川大学化学工程学院;
  • 出版日期:2019-04-19 09:41
  • 出版单位:工程科学与技术
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金项目(21476144)
  • 语种:中文;
  • 页:SCLH201903002
  • 页数:8
  • CN:03
  • ISSN:51-1773/TB
  • 分类号:13-20
摘要
纤维素是地球上最为丰富的生物质资源,具有易降解、可再生、无毒性且廉价易得等优点,可以代替石化资源生产各种高附加值功能材料。从纤维素资源利用出发,综述了近年来纤维素基功能材料的最新研究进展,重点介绍4种主要形态纤维素材料的功能及其应用。内容包括:纤维素多孔微球合成和孔结构调控,及其在吸附分离和药物释放领域的研究进展;纤维素水凝胶和气凝胶及其在医用、诊断、电极、分离材料领域的最新开发与应用进展;其他纤维素基功能材料,如高透光度和高韧性的纤维素膜、高韧性和可编织性的纤维素纤维材料,以及在纺织、光电及智能材料领域的应用。最后对纤维素基功能材料的未来发展提出一些设想,并讨论了在发展过程中面临的关键科学问题,为纤维素基功能材料下一步的研发和应用提供有价值的参考和指导。
        Cellulose, as the most abundant renewable resource on earth, is an ideal raw material for producing various functional materials, because of its biodegradability, biocompatibility, non-toxicity, low-cost, environmental friendliness and safety risks. Based on the utilization of cellulose resources, the review introduced the recent advances in cellulose-based functional materials, focusing on the function and application of four major morphological cellulose materials: including research progress in the field of adsorption separation and protein immobilization based on unique spherical spatial configuration and network structure of cellulose microspheres. Research progress in the fields of medical, intelligent,electrode and separation materials based on the superior biocompatibility of cellulose hydrogel and the three-dimensional porous structure of cellulose aerogel. Research progress in the field of high performance plastics, optoelectronics and smart materials based on high transparency and toughness of cellulose film. Research progress in the field of textiles and electronic materials based on the high toughness, woven, and low density of cellulose fibers. Finally, the perspectives for the future development of cellulose-based materials were put forward, and the key scientific problems that need to be solved in the application-oriented research process of the above four morphological cellulose-based functional materials were discussed. We hope that this work could provide valuable reference and guidance for future design and application on functional cellulosebased materials.
引文
[1]Klemm D,Heublein B,Fink H P,et al.Cellulose:Fascinating biopolymer and sustainable raw material[J].Angewandte Chemie(International Edition),2005,44(22):3358-3393.
    [2]Shen Li,Patel M K.Life cycle assessment of polysaccharide materials:A review[J].Journal of Polymers and The Environment,2008,16(2):154-167.
    [3]John M J,Thomas S.Biofibres and biocomposites[J].Carbohydrate Polymers,2008,71(3):343-364.
    [4]Sun J X,Sun X F,Zhao H,et al.Isolation and characterization of cellulose from sugarcane bagasse[J].Polymer Degradation and Stability,2004,84(2):331-339.
    [5]Habibi Y,Lucia L A,Rojas O J.Cellulose nanocrystals:Chemistry,self-assembly,and applications[J].Chemical Reviews,2010,110(6):3479-3500.
    [6]Ruan C Q,Stromme M,Lindh J.Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of congo red dye[J].Carbohydrate Polymers,2018,181:200-207.
    [7]Prasad K,Mondal D,Sharma M,et al.Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents[J].Carbohydrate Polymers,2018,180:328-336.
    [8]Wang Sen,Lu Ang,Zhang Lina.Recent advances in regenerated cellulose materials[J].Progress in Polymer Science,2016,53:169-206.
    [9]Hirota M,Tamura N,Saito T,et al.Surface carboxylation of porous regenerated cellulose beads by 4-acetamideTEMPO/NaClO/NaClO(2)system[J].Cellulose,2009,16(5):841-851.
    [10]Ettenauer M,Loth F,Thuemmler K,et al.Characterization and functionalization of cellulose microbeads for extracorporeal blood purification[J].Cellulose,2011,18(5):1257-1263.
    [11]Zhang Xiaomei,Yu Hongwen,Yang Hongjun,et al.Graphene oxide caged in cellulose microbeads for removal of malachite green dye from aqueous solution[J].Journal of Colloid and Interface Science,2015,437:277-282.
    [12]Rocha I,Lindh J,Hong J,et al.Blood compatibility of sulfonated cladophora nanocellulose beads[J].Molecules,2018,23:6013.
    [13]Wang D M,Hao G,Shi Q H,et al.Fabrication and characterization of superporous cellulose bead for high-speed protein chromatography[J].Journal of Chromatography(A),2007,1146(1):32-40.
    [14]Bilkova Z,Slovakova M,Lycka A,et al.Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly(HEMA-co-EDMA)and magnetic poly(HEMA-co-EDMA)microspheres[J].Journal of Chromatography(B),2002,770:25-34.
    [15]Barkhordari S,Yadollahi M,Namazi H.pH sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems[J].Journal of Polymer Research,2014,21:4546.
    [16]Du Kaifeng,Yan Min,Wang Quanyi,et al.Preparation and characterization of novel macroporous cellulose beads regenerated from ionic liquid for fast chromatography[J].Journal of Chromatography(A),2010,1217(8):1298-1304.
    [17]Du Kaifeng.Ionic liquid-regenerated macroporous cellulose monolith:Fabrication,characterization and its protein chromatography[J].Journal of Chromatography(A),2017,1494:40-45.
    [18]Deng Chun,Liu Jing,Zhou Wei,et al.Fabrication of spherical cellulose/carbon tubes hybrid adsorbent anchored with welan gum polysaccharide and its potential in adsorbing methylene blue[J].Chemical Engineering Journal,2012,200:452-458.
    [19]Du Kaifeng,Liu Xiaohong,Li Shikai,et al.Synthesis of Cu2+chelated cellulose/magnetic hydroxyapatite particles hybrid beads and their potential for high specific adsorption of histidine-rich proteins[J].ACS Sustainable Chemistry&Engineering,2018,6(9):11578-11586.
    [20]Du Kaifeng,Li Shikai,Zhao Liangshen,et al.One-step growth of porous cellulose beads directly on bamboo fibers via oxidation-derived method in aqueous phase and their potential for heavy metal ions adsorption[J].ACS Sustainable Chemistry&Engineering,2018,6(12):17068-17075.
    [21]Domingues R MA,Gomes M E,Reis R L.The potential of cellulose nanocrystals in tissue engineering strategies[J].Biomacromolecules,2014,15(7):2327-2346.
    [22]Yang X,Bakaic E,Hoare T,et al.Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals:Morphology,rheology,degradation,and cytotoxicity[J].Biomacromolecules,2013,14(12):4447-4455.
    [23]Ye Dongdong,Cheng Qiaoyun,Zhang Qianlei,et al.Deformation drives alignment of nanofibers in framework for inducing anisotropic cellulose hydrogels with high toughness[J].ACS Applied Materials&Interfaces,2017,9(49):43154-43162.
    [24]Yang Xuefeng,Liu Guoqiang,Peng Liao,et al.Highly efficient self-healable and dual responsive cellulose-based hy-drogels for controlled release and 3d cell culture[J].Advanced Functional Materials,2017,27:170317440.
    [25]Chang Chunyu,Peng Jun,Zhang Lina,et al.Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices[J].Journal of Materials Chemistry,2009,19(41):7771-7776.
    [26]Sidorenko A,Krupenkin T,Taylor A,et al.Reversible switching of hydrogel-actuated nanostructures into complex micropatterns[J].Science,2007,315(5811):487-490.
    [27]Chang Chunyu,He Meng,Zhou Jinping,et al.Swelling behaviors of pH and salt-responsive cellulose-based hydrogels[J].Macromolecules,2011,44(6):1642-1648.
    [28]Shi Xingwei,Hu Yanli,Tu Kai,et al.Electromechanical polyaniline-cellulose hydrogels with high compressive strength[J].Soft Matter,2013,9(42):10129-10134.
    [29]Wang Qinwen,Tang Aimin,Liu Yuan,et al.A tunable photoluminescent composite of cellulose nanofibrils and CdSquantum dots[J].Nanomaterials,2016,6(19):164-168.
    [30]Liu Lin,Liao Qian,Xie Jinpeng,et al.Synthetic control of three-dimensional porous cellulose-based bioadsorbents:Correlation between structural feature and metal ion removal capability[J].Cellulose,2016,23(6):3819-3835.
    [31]Yousefi N,Wong K KW,Hosseinidoust Z,et al.Hierarchically porous,ultra-strong reduced graphene oxide-cellulose nanocrystal sponges for exceptional adsorption of water contaminants[J].Nanoscale,2018,10(15):7171-7184.
    [32]Zhang Hui,Li Yuqi,Xu Yaoguang,et al.Versatile fabrication of a superhydrophobic and ultralight cellulose-based aerogel for oil spillage clean-up[J].Physical Chemistry(Chemical Physics),2016,18(40):28297-28306.
    [33]Li Nan,Chen Wei,Chen Guangxue,et al.Low-cost,sustainable,and environmentally sound cellulose absorbent with high efficiency for collecting methane bubbles from seawater[J].ACS Sustainable Chemistry&Engineering,2018,6(5):6370-6377.
    [34]Hu Yijie,Tong Xing,Zhuo Hao,et al.3D hierarchical porous N-doped carbon aerogel from renewable cellulose:An attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption[J].RSC Advances,2016,6(19):15788-15795.
    [35]Fan Peidong,Ren Jia,Pang Kanglei,et al.Cellulose-solventassisted,one-step pyrolysis to fabricate heteroatoms-doped porous carbons for electrode materials of supercapacitors[J].ACS Sustainable Chemistry&Engineering,2018,6(6):7715-7724.
    [36]Tan Sicong,Li Jiajia,Zhou Lijie,et al.Fabrication of a flexible film electrode based on cellulose nanofibers aerogel dispersed with functionalized graphene decorated with SnO2for supercapacitors[J].Journal of Materials Science,2018,53(16):11648-11658.
    [37]Qi Haisong,Maeder E,Liu Jianwen.Electrically conductive aerogels composed of cellulose and carbon nanotubes[J].Journal of Materials Chemistry(A),2013,1(34):9714-9720.
    [38]Yang Chuang,Chen Chuchu,Pan Yuanyuan,et al.Flexible highly specific capacitance aerogel electrodes based on cellulose nanofibers,carbon nanotubes and polyaniline[J].Electrochimica Acta,2015,182:264-271.
    [39]Yang Q L,Fukuzumi H,Saito T,et al.Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions[J].Biomacromolecules,2011,12(7):2766-2771.
    [40]Sehaqui H,Zhou Q,Ikkala O,et al.Strong and tough cellulose nanopaper with high specific surface area and porosity[J].Biomacromolecules,2011,12(10):3638-3644.
    [41]Zhu Mingwei,Wang Yilin,Zhu Shuze,et al.Anisotropic,transparent films with aligned cellulose nanofibers[J].Advanced Materials,2017,29(21):160628421.
    [42]Guo Bingqian,Chen Wufeng,Yan Lifeng.Preparation of flexible,highly transparent,cross-linked cellulose thin film with high mechanical strength and low coefficient of thermal expansion[J].ACS Sustainable Chemistry&Engineering,2013,1(11):1474-1479.
    [43]Li Shaohui,Huang Dekang,Zhang Bingyan,et al.Flexible supercapacitors based on bacterial cellulose paper electrodes[J].Advanced Energy Materials,2014,4:130165510.
    [44]Hamedi M M,Hajian A,Fall A B,et al.Highly conducting,strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes[J].ACS Nano,2014,8(3):2467-2476.
    [45]Chen Y,Poetschke P,Pionteck J,et al.Smart cellulose/graphene composites fabricated by in situ chemical reduction of graphene oxide for multiple sensing applications[J].Journal of Materials Chemistry(A),2018,6(17):7777-7785.
    [46]Egorov V M,Smirnova S V,Formanovsky A A,et al.Dissolution of cellulose in ionic liquids as a way to obtain test materials for metal-ion detection[J].Analytical and Bioanalytical Chemistry,2007,387(6):2263-2269.
    [47]Cai Jie,Zhang Lina,Zhou Jinping,et al.Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution:Structure and properties[J].Advanced Materials,2007,19(6):821.
    [48]Qi Haisong,Cai Jie,Zhang Lina,et al.Influence of finishing oil on structure and properties of multi-filament fibers from cellulose dope in NaOH/urea aqueous solution[J].Cellulose,2008,15(1):81-89.
    [49]Zhu Kunkun,Qiu Cuibo,Lu Ang,et al.Mechanically strong multifilament fibers spun from cellulose solution via inducing formation of nanofibers[J].ACS Sustainable Chemistry&Engineering,2018,6(4):5314-5321.
    [50]Qiu Cuibo,Zhu Kunkun,Zhou Xin,et al.Influences of coagulation conditions on the structure and properties of regenerated cellulose filaments via wet-spinning in LiOH/urea solvent[J].ACS Sustainable Chemistry&Engineering,2018,6(3):4056-4067.
    [51]Li Yuanyuan,Zhu Hongli,Wang Yibo,et al.Cellulose-nanofiber-enabled 3D printing of a carbon-nanotube microfiber network[J].Small Methods,2017,1:170022210.
    [52]Miyauchi M,Miao Jianjun,Simmons T J,et al.Conductive cable fibers with insulating surface prepared by coaxial electrospinning of multiwalled nanotubes and cellulose[J].Biomacromolecules,2010,11(9):2440-2445.
    [53]Shi Xingwei,Hu Yanli,Fu Feiya,et al.Construction of PANI-cellulose composite fibers with good antistatic properties[J].Journal of Materials Chemistry(A),2014,2(21):7669-7673.
    [54]Zhang Zhian,Zhang Juan,Zhao Xingxing,et al.Core-sheath structured porous carbon nanofiber composite anode material derived from bacterial cellulose/polypyrrole as an anode for sodium-ion batteries[J].Carbon,2015,95:552-559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700