湍流等离子体鞘套中高斯光束的传播特性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of propagation characteristics of Gaussian beams in turbulent plasma sheaths
  • 作者:吕春静 ; 韩一平
  • 英文作者:Lü Chun-Jing;Han Yi-Ping;School of Telecommunitions Engineering, Xidian University;School of Physics and Optoelectronic, Xidian University;
  • 关键词:光传输 ; 随机介质 ; 随机相位屏
  • 英文关键词:light propagation;;random media;;random phase screen
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:西安电子科技大学通信工程学院;西安电子科技大学物理与光电工程学院;
  • 出版日期:2019-04-22 09:51
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:61431010)资助的课题~~
  • 语种:中文;
  • 页:WLXB201909014
  • 页数:8
  • CN:09
  • ISSN:11-1958/O4
  • 分类号:125-132
摘要
为了研究高斯光束在湍流等离子体鞘套中的传输特性,根据广义惠更斯-菲涅耳原理,采用基于快速傅里叶变换的功率谱反演法,用多随机相位屏来模拟湍流带来的影响.根据超声速飞行器绕流等离子体流场厚度在厘米级别的特点,光束在两个相位屏之间的传输过程中采用菲涅耳衍射积分的两次快速傅里叶变换算法(double fast Fourier transform algorithm),利用多随机相位屏模拟等离子体鞘套湍流对光束传输产生的影响,解决了多随机相位屏模拟湍流研究中的超短距离传输问题.当飞行高度为45 km,飞行速度为18马赫时,通过对超声速飞行器绕流等离子体流场的统计分析,发现在此飞行条件下折射率起伏方差的强度范围10~(–11)—10~(–14).对高斯光束在湍流等离子体流场中的传输特性进行了数值仿真.结果表明:在等离子体鞘套湍流中折射率起伏强度、波长、传输距离等都是影响高斯光束质量的重要因素.折射率方差越大,传输距离越长,光斑弥散越严重,光强起伏越大,光强减弱也越明显.光束的波长越长,高斯光束抑制湍流的能力越强,光斑弥散程度越小,光强起伏也越小.
        In this paper, the characteristics of Gaussian beam propagation through turbulent plasma sheath are studied. According to the generalized Huygens-Fresnel principle, the random phase screen is generated by power spectrum inversion method based on the fast Fourier transform. The random phase screen is used to simulate turbulence effect. The thickness of the plasma sheath is of about centimeter order of magnitude. Compared with the single fast Fourier transform algorithm, the double fast Fourier transform algorithm is not prone to undersampling and can obtain good image results, even if the diffraction distance is 1 mm. Therefore, double fast Fourier transform algorithm is used for investigating the beam propagation between two phase screens. The turbulence effect of the plasma sheath surrounding a hypersonic vehicle is simulated by the multi-random phase screens. When the flight altitude is 45 km and the flight speed is 18 Mach, the intensity of refractive index fluctuation variance ranges from 10~(-11) to 10~(-14) indicated by analyzing the plasma flow field around the hypersonic vehicle. The characteristics of the Gaussian beam propagation through the turbulent plasma are numerically simulated. The results show that the refractive index fluctuation, wavelength and transmission distance are important factors affecting the Gaussian beam quality. The larger the refractive index variance, the more severe the spot dispersion and the more obvious the light intensity fluctuation. As wavelength is longer,the ability of the Gaussian beam to resist turbulence becomes stronger and the dispersion of the light spot and the intensity fluctuation are smaller. The beam distortion and the spot dispersion become more severe as the transmission distance is longer.
引文
[1] James P R, Churchill R J 1971 IEEE Trans. Aerosp.Electron. Syst. 7 879
    [2] Shao C, Tian D Y, Chen W F 2016 Proceedings of the 34th AIAA Applied Aerodynamics Conference Washington D C,June, 2016 p3428
    [3] Shao C, Nie L, Chen W F 2016 Aerosp. Sci. Technol. 51 151
    [4] Savino R, D'Ella M E, Carandente V 2015 J. Spacecr.Rockets 52 417
    [5] Starkey R P 2015 J. Spacecr. Rockets 52 426
    [6] Li J T, Guo L X 2012 J. Electromagn. Waves Appl. 26 1767
    [7] Belov I F, Borovoy V Y, Gorelov V A, Kireev A Y, Korolev A S, Stepanov E A 2001 J. Spacec. Rockets 38 249
    [8] Lyle C S, Norman D A 1973 J. Spacer. 10 170
    [9] Xie K, Yang M, Bai B W, Li X P, Zhou H, Guo L X 2016 J.Appl. Phys. 119 023301
    [10] Thoma C, Rose D V, Miller C L, Clark R E, Hughes T P2009 J. Appl. Phys. 106 043301
    [11] Hartunian R A,Stewart G E,Fergason S D,Curtiss T J,Seibold R W 2007 Causes and Mitigation of Radio Frequency(RF)Blackout During Reentry of Reusable Launch Vehicles(Cambridge:U.S. Department of Transportation)Aerospace Report No. ATR-2007(5309)-1
    [12] Yao B, Li X P, Shi L, Liu Y M, Zhu C Y 2017 IEEE Trans.Plasma Sci. 45 2227
    [13] Song Z G, Liu J F, Du Y X, Xi X L 2015 J. Appl. Phys. 1211067
    [14] Shi L, Liu Y M, Fang S X, Li X P, Yao B, Zhao L, Yang M2016 IEEE Trans. Plasma Sci. 44 1083
    [15] He G L, Zhan Y F, Zhang J Z, Ge N 2016 IEEE Trans.Plasma Sci. 44 232
    [16] Yao B, Li X P, Shi L 2016 Proc. SPIE 10141 101410J
    [17] Lin T C, Sproul L K 2006 Comput. Fluids 35 703
    [18] Li J T, Yang S F, Guo L X 2017 IET Microw. Antennas Propag. 11 280
    [19] Li W, Zeng S G, Liu Y 2015 Laser Optoelectron. Prog. 52080104(in Chinese)[李婉,曾曙光,刘雁2015激光与光电子学进展52 080104]
    [20] Wang L, Shen X J, Wang W A, Dong H J, He Y Q 2012Laser Infrar. 42 852(in Chinese)[王龙,沈学举,张维安,董红军,何永强2012激光与红外42 852]
    [21] Schmidt J D 2010 Numerical Simulation of Optical Wave Propagation(Washington:Bellingham SPIE)pp166-172
    [22] Yildiz F, Kurt H 2017 Proc. SPIE 10425 1042500
    [23] Zhang Y L, Ma D L, Yuan X H, Zhou Z Y 2018 Proc. SPIE10256 1025609
    [24] Rebecca J E, Matthew E G 2006 Proc. SPIE 6303 630301
    [25] Farwell N H, Korotkova O 2014 Proc. SPIE 9224 922416
    [26] Korotkova O, Farwell N, Shchepakina E 2012 Wave Random Complex 22 260
    [27] Liu Z L, Chen J L, Zhao D M 2017 Appl. Opt. 56 3577
    [28] Eric D G, John E F 2010 Review of Leading Approaches for Mitigating Hypersonic Vehicle Communications Blackout and a Method of Ceramic Particulate Injection Via Cathode Spot Arcs for Blackout Mitigation(Cleveland:NASA Glenn Research Center)NASA/TM-2010-216220, E-17194
    [29] Keidar M, Kim M, Boyd I 2008 J. Spacecr. Rockets 45 445
    [30] Park C 1989 J. Thermophyss. 3 233
    [31] Schlichting H, Gersten K 2017 Boundary-layer Theory(Berlin Heidelberg:Springer Nature)pp68-73
    [32] David C W 2006 Modeling for CFD(3rd Ed.)(USA:Birmingham)pp122-128
    [33] Bamakrishnan R, Anandhanarayanan K, Krishnamurthy R,Chakraborty D 2017 J. Ins. Eng. India Ser. C 98 285
    [34] Li L Q, Huang W, Yan L, Zhao Z T, Liao L 2017 Int. J.Hydrogen Energy 42 19318
    [35] Kim K H, Kim C,Rho 0 H 2001 J. Comp. Phys. 174 38
    [36] Yoon. S, Jameson A 1988 AIAA J. 26 1025
    [37] Tromeur E, Garnier E, Sagaut P 2006 J. Fluids. Eng. 128 239
    [38] Richardson M B, Clark R L 1987 Proc. SPIE 0788 6
    [39] Niu H H, Han Y P 2017 Las. Technol. 41 452(in Chinese)[牛化恒,韩一平2017激光技术41 452]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700