夹杂物对316L不锈钢初期点蚀影响的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation on Effect of Inclusions on Early Stage Pitting Corrosion of 316L Stainless Steel
  • 作者:梁婉怡 ; 胡丽娟 ; 董海英 ; 林保全 ; 谢耀平
  • 英文作者:LIANG Wanyi;HU Lijuan;DONG Haiying;LIN Baoquan;XIE Yaoping;Institute of Materials Science,School of Materials Science and Engineering,Shanghai University;Laboratory for Microstructure,Shanghai University;
  • 关键词:夹杂物 ; 点蚀初期 ; 316L不锈钢 ; 有限元方法
  • 英文关键词:inclusion;;initial pitting corrosion;;316L stainless steel;;finite element method
  • 中文刊名:SHJI
  • 英文刊名:Shanghai Metals
  • 机构:上海大学材料科学与工程学院材料研究所;上海大学微结构重点实验室;
  • 出版日期:2019-03-31
  • 出版单位:上海金属
  • 年:2019
  • 期:v.41;No.230
  • 基金:国家自然科学基金(No.51301102)
  • 语种:中文;
  • 页:SHJI201902007
  • 页数:8
  • CN:02
  • ISSN:31-1558/TF
  • 分类号:39-46
摘要
稀土元素的添加通常能改善不锈钢的耐腐蚀性能。为了研究稀土元素铈对316L不锈钢耐腐蚀性能的影响,基于扫描电镜(SEM)、动电位极化(PDP)试验,采用有限元方法研究了含不同分布形态夹杂物的316L不锈钢在质量分数为0.9%的NaCl溶液中的早期腐蚀行为。结果表明:添加铈后,316L不锈钢中夹杂物的形态由长条状转变为圆形。有限元模拟发现:当腐蚀初期不锈钢暴露在溶液中的阳极面积相等时,含长条状夹杂物的不锈钢相较于含圆形夹杂物的不锈钢的纵向点蚀速度更快,点蚀坑的尺寸更大,点蚀孔窄且深,更利于点蚀的发展。当不锈钢中夹杂物面积为定值时,夹杂物的近邻分布会加快纵向点蚀速度,增加点蚀坑的数量和尺寸,点蚀孔窄且深;夹杂物远邻分布时,点蚀孔宽且浅。
        Addition of rare earth elements generally improves the corrosion resistance of stainless steel.In order to study the influence of rare earth element cerium on the corrosion resistance of 316 L stainless steel,based on the scanning electron microscopy(SEM) and potentiodynamic polarization(PDP) test,the finite element method(FEM) was used to investigate the effect of distribution and morphology of inclusions on the initial pitting corrosion behavior of 316 L stainless steel in 0.9% by mass NaCl solution.The results showed that the morphology of inclusions changed from lath-shaped to circular shape when Ce was added.The FEM results demonstrated that when the anode area of stainless steel exposed in solution was equal in the initial stage,the steel with lathshaped inclusions had a faster pitting rate in the longitudinal direction as compared to the steel with circular inclusions,so resulting in the formation of narrow and deep pitting holes with larger size,which was in favor of the development of pitting.When the area of inclusions in stainless steel was fixed,the gathered inclusions boosted the longitudinal pitting corrosion rate and increased the size and quantity of pitting holes which was narrow and deep.In contrast,the pitting holes in stainless steel with dispersed inclusions were wide and shallow.
引文
[1]高宗仁.简明不锈钢使用手册[M].太原:山西科学技术出版社,2003.
    [2]KRAWIEC H,VIGNAL V,HEINTZ O,et al.Influence of the dissolution of MnS inclusions under free corrosion and potentiostatic conditions on the composition of passive films and the electrochemical behaviour of stainless steels[J].Electrochimica Acta,2006,51(16):3235-3243.
    [3]BOHNI H,SUTER T,SCHREVER A.Micro-and nanotechniques to study localized corrosion[J].Electrochimica Acta,1995,40(10):1361-1368.
    [4]SUTER T,BOHNI H.A new microelectrochemical method to study pit initiation on stainless steels[J].Electrochimica Acta,1997,42(20-22):3275-3280.
    [5]SCHMUKI P,HILDEBRAND H,FRIEDRICH A,et al.The composition of the boundary region of Mn S inclusions in stainless steel and its relevance in triggering pitting corrosion[J].Corrosion Science,2005,47(5):1239-1250.
    [6]PARDO A,MERINO M C,COY A E,et al.Pitting corrosion behavior of austenitic stainless steels-combining effects of Mn and Mo additions[J].Corrosion Science,2008,50(6):1796-1806.
    [7]ZHENG S J,WANG Y J,ZHANG B,et al.Identification of MnCr2O4nano-octahedron in catalyzing pitting corrosion of austenitic stainless steels[J].Acta Materialia,2010,58(15):5070-5085.
    [8]RUORU K,RICHARD A.Initiation of corrosion pits at inclusions on 304 stainless steel[J].Electrochemical Society,1995,142(12):4056-4062.
    [9]NOBUYOSHI H,KOICHI H,YU S,et al.Improvement of pitting corrosion resistance of type 316L stainless steel by potentiostatic removal of surface Mn S inclusions[J].International Journal of Corrosion,2012,7(5):1-6.
    [10]SCOTTO V,VENTURA G,TRAVERSO E.The influence of non-metallic inclusion nature and shape on the pitting corrosion susceptibility of 18Cr9Ni and 17Cr11Ni2Mo austenitic stainless steels[J].Corrosion Science,1979,19(4):237-250.
    [11]WEBB E G,SUTER T,ALKIRE R C.Microelectro chemical measurements of the dissolution of single Mn S inclusions,and the prediction of the critical conditions for pit initiation on stainless steel[J].Journal of the Electrochemical Society,2001,148(5):B186-B195.
    [12]蔡国君.铈对202不锈钢的组织和性能影响规律研究[D].包头:内蒙古科技大学,2010:19-25.
    [13]岳丽杰,韩金生,王龙妹.稀土耐候钢中的夹杂物及耐点蚀性能研究[J].稀土,2013,34(3):13-18.
    [14]PARK I J,LEE S M,KANG M,et al.Pitting corrosion behavior in advanced high strength steels[J].Journal of Alloys and Compounds,2015,619(5):205-210.
    [15]LIU Q,YANG S F,ZHAO M J,et al.Pitting corrosion of steel induced by Al2O3inclusions[J].Metals,2017,7(9):347-359.
    [16]张弛,张双杰,冯捷,等.硫化物夹杂对钢点蚀行为的影响[J].金属热处理,2016,41(9):62-65.
    [17]DICKINSON E J F,EKSTRM H,FONTES E.COMSOLMultiphysics:Finite element software for electrochemical analysis.A mini-review[J].Electrochemistry Communications,2014,40:71-74.
    [18]汪秀秀,李阳.稀土对超级铁素体不锈钢组织和性能的影响[J].失效分析与预防,2016,11(6):344-356.
    [19]袁书强,杨辉,王芳,等.稀土对11%Cr铁素体不锈钢耐腐蚀性能的影响[J].稀土,2016,37(3):79-84.
    [20]DESHPANDE K B.Numerical modeling of micro-galvanic corrosion[J].Electrochimica Acta,2011,56(4):1737-1745.
    [21]YIN L T,JIN Y,LEYGRAF C,et al.A FEM model for investigation of micro-galvanic corrosion of Al alloys and effects of deposition of corrosion products[J].Electrochimica Acta,2016,192:310-318.
    [22]YU Q F,PAN T Y.Microstructural modeling of pitting corrosion in steels using an arbitrary lagrangian-eulerian method[J].Metallurgical and Materials Transactions A,2017,48(5):2618-2632.
    [23]田文明.304不锈钢在3.5%Nacl溶液中的点蚀动力学研究[D].南昌:南昌航空大学,2013:27-34.
    [24]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1994.
    [25]马洪运,贾志军,吴旭冉,等.电化学基础(Ⅰ)---物质守恒与法拉第定律及其应用[J].储能科学与技术,2012,1(2):139-143.
    [26]VUILLEMIN B,PHILIPPE X,OLTRA R,et al.SVET,AFMand AES study of pitting corrosion initiated on Mn S inclusions by microinjection[J].Corrosion Science,2003,45(6):1143-1159.
    [27]AVA C,IZUMI M,YU S,et al.A microelectrochemical system for in situ high-resolution optical microscopy:Morphological characteristics of pitting at Mn S inclusion in stainless steel[J].Journal of the Electrochemical Society,2012,159(8):341-350.
    [28]VIGNAL V,KRAWIEC H,HEINTZ O,et al.The use of local electrochemical probes and surface analysis methods to study the electrochemical behaviour and pitting corrosion of stainless steels[J].Electrochimica Acta,2007,52(15):4994-5001.
    [29]YIN Z F,ZHAO W Z,TIAN W,et al.Pitting behavior on super 13Cr stainless steel in 3.5%Nacl solution in the presence of acetic acid[J].Solid State Electrochem,2009,13(8):1291-1296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700