滨海沙地不同树种人工林生物量及凋落物碳氮养分归还
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biomass and Litter Carbon and Nitrogen Return of Different Plantations in the Sandy Coastal Plain Area
  • 作者:葛露露 ; 何宗明 ; 林宇 ; 苏利堡 ; 黄秀勇
  • 英文作者:GE Lu-lu;HE Zong-ming;LIN Yu;SU Li-bao;HUANG Xiu-yong;College of Forestry,Fujian Agriculture and Forestry University;Changle Dahe State-owned Protection Forest Farm of Fujian Province;
  • 关键词:生物量 ; 净生产力 ; 碳氮养分归还 ; 滨海沙地 ; 人工林
  • 英文关键词:biomass;;net productivity;;carbon and nitrogen nutrients return;;sandy coastal plain area;;plantation
  • 中文刊名:XBLX
  • 英文刊名:Journal of Northwest Forestry University
  • 机构:福建农林大学林学院;福建省长乐大鹤国有防护林场;
  • 出版日期:2019-01-16 14:08
  • 出版单位:西北林学院学报
  • 年:2019
  • 期:v.34;No.155
  • 基金:国家自然科学基金项目(31570604,41371269);; 福建省林业科技项目(闽林科[2014]2号);; 福建农林大学部级创新平台资助
  • 语种:中文;
  • 页:XBLX201901006
  • 页数:8
  • CN:01
  • ISSN:61-1202/S
  • 分类号:45-52
摘要
基于福州市滨海后沿沙地上营造的人工林的调查,以9年生尾巨桉(Eucalyptus urophylla×E.grandis)、木麻黄(Casuarina equisetifolia)、纹荚相思(Acacia aulacocarpa)3种主要人工林为对象,采用Monsi分层切割法(乔木层)和样方收获法(草本层、凋落物层)获取这3种人工林的生物量,研究其生物量分配格局及凋落物碳氮养分归还。结果表明,尾巨桉乔木层地上部分生物量为49.950t·hm~(-2),地下部分生物量为15.270t·hm~(-2),分别占生态系统总生物量的62.08%和18.98%;草本层生物量为0.698t·hm~(-2)(0.87%);凋落物层生物量为14.539t·hm~(-2)(18.07%)。木麻黄乔木层地上部分生物量为51.630t·hm~(-2),地下部分为20.270t·hm~(-2),分别占生态系统总生物量的62.65%和24.60%;草本层生物量为0.017t·hm~(-2)(0.02%);凋落物层生物量为10.488t·hm~(-2)(12.73%)。纹荚相思乔木层地上部分生物量为51.130t·hm~(-2),地下部分为13.760t·hm~(-2),分别占生态系统总生物量的64.43%和17.34%;草本层生物量为0.093t·hm~(-2)(0.12%);凋落物层生物量为14.369t·hm~(-2)(18.11%)。3种人工林地上各器官生物量均表现为:树干>树枝>树皮>树叶。这3种人工林生态系统总生物量与乔木层生物量排序相同,表现为木麻黄(82.40t·hm~(-2))>尾巨桉(80.46t·hm~(-2))>纹荚相思(79.35t·hm~(-2)),且生物量分配格局均为乔木层>凋落物层>草本层。3种人工林的净生产力表现为木麻黄(16.21t·hm~(-2)·a~(-1))>尾巨桉(14.00t·hm~(-2)·a~(-1))>纹荚相思(12.51t·hm~(-2)·a~(-1))。凋落物碳氮养分年总归还量表现为木麻黄(3.953t·hm~(-2)·a~(-1))>尾巨桉(3.329t·hm~(-2)·a~(-1))>纹荚相思(2.751t·hm~(-2)·a~(-1))。
        Based on the survey of primary plantations in southeast coastal area of Fuzhou,the biomass allocation pattern and litter carbon and nitrogen return of Eucalyptus urophylla×E.grandis,Casuarina equisetifolia and Acacia aulacocarpa were investigated by obtaining their biomass with Monsi stratified cutting(the tree layer)and sample harvest method(the herb layer and the litter layer).The results showed that the aboveground biomass of the tree layer of E.urophylla×E.grandis was 49.950t·hm~(-2) and the underground biomass was 15.270t·hm~(-2).They accounted for 62.08% and 18.98% of the total biomassof the ecosystem respectively.The biomass of the herb layer was 0.698t·hm~(-2)(0.87%),and the biomass of the litter layer was 14.539t·hm~(-2)(18.07%).The aboveground biomass of the tree layer of C.equisetifolia was 51.630t·hm~(-2) and the underground biomass was 20.270t·hm~(-2).They accounted for 62.65%and 24.60%of the total,respectively.The biomass of the therb layer was 0.017t·hm~(-2)(0.02%),and the biomass of the litter layer was 10.488t·hm~(-2)(12.73%).The aboveground biomass of the tree layer of A.aulacocarpawas 51.130t·hm~(-2) and the underground biomass was 13.760t·hm~(-2).They accounted for64.43%and 17.34% of the total biomass,respectively.The biomass of the herb layer was 0.093t·hm~(-2)(0.12%),and the biomass of the litter layer was 14.369t·hm~(-2)(18.11%).The biomass of different organs on the ground of the 3plantations were all shown as trunk>root>branch>bark>leaf.The order of the ecosystem biomass of these 3plantations was the same as that of the tree layer,C.equisetifolia(82.40t·hm~(-2))>E.urophylla×E.grandis(80.46t·hm~(-2))>A.aulacocarpa(79.35t·hm~(-2)),and the biomass distribution pattern was tree layer>litter layer>herb layer.The net productivity of the 3plantations was shown as C.equisetifolia(16.21t·hm~(-2)·a~(-1))>E.urophylla×E.grandis(14.00t·hm~(-2)·a~(-1))>A.aulacocarpa(12.51t·hm~(-2)·a~(-1)).The total annual return of carbon and nitrogen nutrients in litter was shown as C.equisetifolia(3.953t·hm~(-2)·a~(-1))>E.urophylla×E.grandis(3.329t·hm~(-2)·a~(-1))>A.aulacocarpa(2.751t·hm~(-2)·a~(-1)).
引文
[1] WOODWELL G M,WHITTAKER R H,REINERS W A,et al.The biota and the world carbon budget[J].Science,1978,199(4325):141-146.
    [2] POST W M,EMANUEL W R,ZINKE P J,et al.Soil carbon pools and world life zone[J].Nature,1982,298(5870):156-1593.
    [3]田大伦,项文化,闫文德,等.速生阶段杉木人工林产量结构及生产力的代际效应[J].林业科学,2002,38(4):14-18.TIAN D L,XIANG W H,YAN W D,et al.Effect of successive-rotation on productivity and biomass of chinese fir plantation at fast growing stage[J].Scientia Silvae Sinicae,2002,38(4):14-18.(in Chinese)
    [4]樊后保,李燕燕,苏兵强,等.马尾松-阔叶树混交异龄林生物量与生产力分配格局[J].生态学报,2006,26(8):2463-2473.
    [5] GARKOTI S C.Estimates of biomass and primary productivity in a high-altitude maple forest of the west central Himalayas[J].Ecological Research,2008,23(1):41-49.
    [6]宁晓波,项文化,王光军,等.湖南会同连作杉木林凋落物量20年动态特征[J].生态学报,2009,29(9):5122-5129.
    [7]杜虎,宋同清,曾馥平,等.桂东不同林龄马尾松人工林的生物量及其分配特征[J].西北植物学报,2013,33(2):394-400.DU H,SONG T Q,ZENG F P,et al.Biomass and its allocation in pinus massoniana plantation at different stand ages in east Guangxi[J].Acta Botanica Boreali-Occidentalia Sinica,2013,33(2):394-400.(in Chinese)
    [8]张浩,宋同清,王克林,等.桂西地区不同林龄栎类群落的生物量及其分配格局[J].农业现代化研究,2013,34(6):758-762.ZHANG H,SONG T Q,WANG K L,et al.Oak biomass and its allocation at different stand ages in west of Guangxi,China[J].Research of Agricultural Modernization,2013,34(6):758-762.(in Chinese)
    [9]代海军,何怀江,赵秀海,等.阔叶红松林两种主要树种的生物量分配格局及异速生长模型[J].应用与环境生物学报,2013,19(4):718-722.DAI H J,HE H J,ZHAO X H,et al.Biomass allocation patterns and allometric models of two dominant tree species in broad-leaved and korean pine mixed forest[J].Chinese Journal of Applied&Environmental Biology,2013,19(4):718-722.(in Chinese)
    [10]闫涛,朱教君,杨凯,等.辽东山区落叶松人工林地上生物量和养分元素分配格局[J].应用生态学报,2014,25(10):2772-2778.YAN T,ZHU J J,YANG K,et al.Aboveground biomass and nutrient distribution patterns of larch plantation in a montane region of eastern Liaoning Province,China[J].Chinese Journal of Applied Ecology,2014,25(10):2772-2778.(in Chinese)
    [11]郑路,蔡道雄,卢立华,等.南亚热带不同树种人工林生物量及其分配格局[J].林业科学研究,2014,27(4):454-458.ZHENG L,CAI D X,LU L H,et al.Biomass allocation of different species plantations in subtropical area of China[J].Forest Research,2014,27(4):454-458.(in Chinese)
    [12]杨明,汪思龙,张伟东,等.杉木人工林生物量与养分积累动态[J].应用生态学报,2010,21(7):1674-1680.
    [13]明安刚,贾宏炎,田祖为,等.不同林龄格木人工林碳储量及其分配特征[J].应用生态学报,2014,25(4):940-946.MING A G,JIA H Y,TIAN Z W,et al.Characteristics of carbon storage and its allocation in Erythrophleum fordii plantations with different ages[J].Chinese Journal of Applied Ecology,2014,25(4):940-946.(in Chinese)
    [14]徐永兴.杉木-深山含笑混交林及其纯林乔木层的净生产力研究[J].浙江林业科技,2017,37(1):47-50.
    [15]唐罗忠,刘志龙,虞木奎,等.两种立地条件下麻栎人工林地上部分养分的积累和分配[J].植物生态学报,2010,34(6):661-670.TANG L Z,LIU Z L,YU M K,et al.Nutrient accumulation and allocation of aboveground parts in Quercus acutissima plantationsunder two site conditions in Anhui,China[J].Chinese Journal of Plant Ecology,2010,34(6):661-670.(in Chinese)
    [16]程瑞梅,封晓辉,肖文发,等.北亚热带马尾松净生产力对气候变化的响应[J].生态学报,2011,31(8):2086-2095.CHENG R M,FENG X H,XIAO W F,et al.Response of net productivity of masson pine plantation to climate change in north Subtropical region[J].Acta Ecologica Sinica,2011,31(8):2086-2095.(in Chinese)
    [17]宋曰钦,翟明普,贾黎明.不同树龄三倍体毛白杨生物量分布规律[J].东北林业大学学报,2010,38(1):1-3.SONG R Q,ZHAI M P,JIA L M.Biomass distribution of triploid Populus tomentosa at different ages[J].Journal of Northeast Forestry University,2010,38(1):1-3.(in Chinese)
    [18]刘延惠,王彦辉,于澎涛,等.六盘山主要植被类型的生物量及其分配[J].林业科学研究,2011,24(4):443-452.LIU Y H,WANG Y H,YU P T,et al.Biomass and its allocation of the main vegetation types in Liupan Mountains[J].Forest Research,2011,24(4):443-452.(in Chinese)
    [19]罗佳,田育新,杨楠,等.环洞庭湖不同类型防护林生物量研究[J].湖南林业科技,2011,38(5):27-29.
    [20]温中林,郑卫,陈日美,等.马占相思人工林生物量及营养元素分布研究[J].安徽农业科学,2010,38(27):15040-15045.
    [21] WANG J W,YU D,WANG Q.Growth,biomass allocation,and autofragmentation responses to root and shoot competition in Myriophyllum spicatumas a function of sediment nutrient supply[J].Aquatic Botany,2008,89(6):357-364.
    [22] ENQUIST B J,NIKLAS K J.Global allocation rules for patterns of bio-mass partitioning in seed plants[J].Science,2002,295(5559):1517-1520.
    [23]马维玲,石培礼,李文华,等.青藏高原高寒草甸植株性状和生物量分配的海拔梯度变异[J].中国科学:生命科学,2010,40(6):533-543.
    [24] MCCARTHY M C,ENQUIST B J.Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation[J].Functional Ecology,2007,21(4):713-720.
    [25]方江平.西藏南伊沟林芝云杉林生物量与生产力研究[J].林业科学研究,2012,25(5):582-589.FANG J P.Study on biomass and productivity of Picea likiangensis var.linzhiensis forest in Nanyigou of Tibet[J].Forest Research,2012,25(5):582-589.(in Chinese)
    [26]易志强,朱丽琴,贾龙,等.红壤区3种典型植被恢复模式凋落物动态及碳氮归还特征[J].南昌工程学院学报,2016,35(6):16-23.
    [27]林宇,王雪梅,张勇,等.滨海沙地尾巨桉人工林凋落物及碳氮养分归还[J].西南林业大学学报:自然科学,2013,33(5):24-28.LIN Y,WANG X M,ZHANG Y,et al.Carbon and nitrogen return by litter of an Eucalyptus urophylla×E.grandis plantation in sandy coastal plain area[J].Journal of Southwest Forestry University:Nature Science Edtion,2013,33(5):24-28.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700