不锈钢弹簧断裂分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fracture analysis of stainless steel spring
  • 作者:田青超 ; 郑成明 ; 江泽超
  • 英文作者:Tian Qingchao;Zheng Chengming;Jiang Zechao;Shanghai University;
  • 关键词:不锈钢弹簧 ; 形变强化 ; 马氏体 ; 应力腐蚀 ; 抗拉强度
  • 英文关键词:stainless steel spring;;deformation strengthening;;martensite;;stress corrosion;;tensile strength
  • 中文刊名:JSZP
  • 英文刊名:Metal Products
  • 机构:上海大学;
  • 出版日期:2018-12-25
  • 出版单位:金属制品
  • 年:2018
  • 期:v.44;No.265
  • 语种:中文;
  • 页:JSZP201806008
  • 页数:5
  • CN:06
  • ISSN:41-1145/TG
  • 分类号:31-35
摘要
某厂奥氏体不锈钢压力弹簧工作于柴油燃烧产物的弱酸性气体环境,在服役过程中经常发生断裂,使用扫描电子显微镜观察弹簧断口表面形貌,使用能谱对腐蚀产物进行表征检测。金相分析和硬度测试表明,该弹簧钢丝在制造过程中存在形变强化、马氏体相变以及析出强化效应,但弹簧在服役过程发生了应力松弛。研究发现,在弱酸性的工作环境下,弹簧钢丝表面的马氏体首先发生点蚀,随后发生应力腐蚀开裂。
        Austenitic stainless steel pressure springs in a certain factory work in the weak acid gas environment of diesel fuel combustion products. Fracture often occurs during service. Fracture surface morphology of the springs is observed by scanning electron microscopy and corrosion products are characterized by energy spectrum. The metallographic analysis and hardness test show that there are deformation strengthening,martensitic transformation and precipitation strengthening effect in the manufacturing process of the spring steel wire,but the stress relaxation occurs in the service process of the spring. It is found that the martensite on the surface of spring steel wire first occurs pitting corrosion and then stress corrosion cracking under weak acid working conditions.
引文
[1]美国材料与试验协会.Standard Specification for Stainless Steel Spring Wire:ASTM A313/A313M[S].北京:中国标准出版社,2013.
    [2]史世凤,李宭.奥氏体不锈钢弹簧丝的大变形拉拔强化[J].材料热处理学报,2011(11):73-77.
    [3]黄文克,孔凡亚.冷拔高强00Cr18Ni10N不锈钢丝显微组织与力学性能[J].金属学报,2009(3):275-279.
    [4]李腾.0Cr18Ni9不锈钢弹簧蠕变和应力松弛研究[D].哈尔滨:哈尔滨工业大学,2014.
    [5]邢献强.304H不锈钢弹簧锈蚀原因分析[J].金属制品,2015(4):36-39.
    [6]Zhang Y,Li M,Bi H,et al.Martensite transformation behavior and mechanical properties of cold-rolled metastable Cr-Mn-Ni-N austenitic stainless steels[J].Materials Science&Engineering A,2018,724:411-420.
    [7]Wu Y,Nürnberger U.Corrosion-technical properties of high-strength stainless steels for the application in prestressed concrete structures[J].Materials&Corrosion,2009,60(10):771-780.
    [8]鲍明昱,任呈强,郑云萍,等.基于点蚀的316L不锈钢在酸性气体环境中的适应性评价[J].材料导报,2016(17):10-15.
    [9]查小琴,韩红民,谢玉林,等.微观组织对0Cr17Ni4Cu4Nb马氏体不锈钢的耐点腐蚀性能的影响[J].材料开发与应用,2012(4):64-68.
    [10]Tavares S S M,Machado C L C,Oliveira I G,et al.Damage associated with the interaction between hydrogen and microstructure in a high sulfur 17-4PH steel for studs[J].Engineering Failure Analysis,2017,82:642-647.
    [11]Tavares S S M,Pardal J M,Menezes L,et al.Failure analysis of PSV springs of 17-4PH stainless steel[J].Engineering Failure Analysis,2009,16(5):1757-1764.
    [12]Recio F J,Wu Y,Alonso M C,et al.Hydrogen embrittlement risk in cold-drawn stainless steels[J].Materials Science&Engineering A,2013,564:57-64.
    [13]ISO 15156/NACE 00175-Part 3:Petroleum and Natural Gas Industries-Materials for Use in H2S-containing Environments in Oil and Gas Production-Part 3:Cracking Resistant CRAs(Corrosion Resistant Alloys)and Other Alloys,ISO,2009.
    [14]Hurley M F,Olson C R,Ward L J,et al.Transgranular stress corrosion cracking of 304L stainless steel pipe clamps in direct use geothermal water heating applications[J].Engineering Failure Analysis,2013,33(5):336-346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700