高速铁路大跨度连续钢桁梁柔性拱桥减震研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on vibration reduction of high-speed railway flexible arch bridge with long-span continuous steel truss beam
  • 作者:刘应龙 ; 蔺鹏臻 ; 何志刚 ; 孙理想 ; 杨子江
  • 英文作者:Liu Yinglong;Lin Pengzhen;He Zhigang;Sun Lixiang;Yang Zijiang;School of Civil Engineering, Lanzhou Jiaotong University;
  • 关键词:铁路桥 ; 钢桁梁柔性拱 ; 非线性时程分析 ; 地震响应 ; 粘滞阻尼器
  • 英文关键词:railroad bridge;;steel truss girder and flexible arch;;nonlinear time history analysis;;seismic response;;viscous damper
  • 中文刊名:YYLX
  • 英文刊名:Chinese Journal of Applied Mechanics
  • 机构:兰州交通大学土木工程学院;
  • 出版日期:2019-02-01 16:55
  • 出版单位:应用力学学报
  • 年:2019
  • 期:v.36;No.157
  • 基金:国家自然科学基金重大项目(11790281);国家自然科学基金(51878323);; 中国铁路总公司科技研究开发计划课题(2017G010-C)
  • 语种:中文;
  • 页:YYLX201903025
  • 页数:9
  • CN:03
  • ISSN:61-1112/O3
  • 分类号:172-179+269
摘要
在1联(3×168)m连续钢桁梁柔性拱桥设置纵向粘滞阻尼器,采用非线性时程分析方法研究其减震效果。从减小拱脚轴力、墩底内力、墩梁纵向相对位移三方面出发,讨论了粘滞阻尼器各参数对结构地震响应的影响,并与未设置粘滞阻尼器情况下的地震响应进行对比。初选了减震效果较好的阻尼系数C和速度指数ζ,继而在全桥(两联3×168m连续钢桁梁柔性拱)布置该参数的粘滞阻尼器并分析其减震效果。结果表明:固定墩顶的拱脚轴力值在纵向布置粘滞阻尼器后显著减小,而位于活动墩顶的拱脚轴力值个别存在增大情况,且当ζ一定时,C越大减震效果越明显;活动墩顶的墩梁纵向相对位移随ζ的减小和C的增大而减小;以1联连续钢桁梁柔性拱桥为研究对象,所选定的阻尼器在全桥布置后,全桥地震响应的最大正减震率为76.5%,最大负减震率为-21.40%;尽管全桥布置阻尼器后某些位置出现了负减震率,但其地震响应仍然全桥最小;通过对两侧简支钢桁梁粘滞阻尼器的参数优化后,个别位置的地震响应进一步减小,从而提高了全桥的抗震性能。
        Installing viscous damper on the movable pier of a continuous steel truss beam of flexible arch bridge, the seismic performance of viscous dampers is studied by nonlinear time history analysis. Starting from reducing the axial force of the arch foot, the internal force at the pier bottom and the relative displacement between the pier and the beam, the sensitivity analysis of damping coefficient C and velocity index ζ is carried out. By comparison with seismic responses without viscous dampers, the C with better damping effect is primarily selected. Then, the viscous damper with optimal parameter is applied to the whole bridge and its damping effect is analyzed. The results show that: in the longitudinal arrangement of continuous steel truss beam flexible arch bridge, viscous damper significantly reduce the arch foot axial force value of fixed pier, while the dynamic value of the arch foot of active pier is increased individually. When ζ is kept certain, the damping effect is more obvious with the decrease of ζ and the increase of C. Taking one continuous steel truss beam flexible arch bridge as the research object, then the selected damper is arranged in the whole bridge, the maximum positive seismic response of full bridge seismic response is 76.55% while the maximum negative shock absorption rate is-21.40%. The seismic response of the negative shock absorption position is increasing, its value is still smaller than that of the positive shock absorption position after the earthquake response decreases. After optimizing the parameters of viscous dampers of simply supported steel truss beams on both sides, the seismic responses of the individual locations are further reduced, thus improving the seismic response of the whole bridge.
引文
[1]叶爱君.桥梁抗震[M].北京:人民交通出版社,2002.(YEAijun.Seismic design of bridge[M].Beijing:China Communication Press,2002(in Chinese)).
    [2]杨喜文,李建中,雷昕戈.多孔大跨度连续梁桥减隔震技术应用研究[J].中国公路学报,2010,23(6):58-65.(YANG Xiwen,LI Jianzhong,LEI Xin’ge.Research on application of seismic isolation techniques to multiple and large-span continuous girder bridge[J].China journal of highway and transport,2010,23(6):58-65(in Chinese)).
    [3]毛玉东,李建中.大跨连续梁桥纵向减震机理和减震效果分析[J].同济大学学报(自然科学版),2016,42(2):185-191.(MAO Yudong,LI Jianzhong.Analysis of seismic mitigation mechanism and effect on longitudinal direction of long-span continuous bridge[J].Journal of Tongji university(natural science edition),2016,42(2):185-191(in Chinese)).
    [4]夏修身,崔靓波,陈兴冲,等.长联大跨连续梁桥隔震技术应用研究[J].桥梁建设,2015,45(4):39-45.(XIA Xiushen,CUI Liangbo,CHEN Xingchong,et al.Study of application of seismic isolation techniques for long span and long unit continuous beam bridge[J].Bridge construction,2015,45(4):39-45(in Chinese)).
    [5]SEIM C.The seismic retrofit of the golden gate bridge[C]//Proceedings of PRC-US Workshop on Seismic Analysis and Design of Special Bridge.Shanghai:[s.n.],2002:119-128.
    [6]王蒂,黄平明.超大跨度斜拉桥纵向减震耗能塔、梁连接装置研究[J].郑州大学学报(工学版),2008,29(4):112-115,144.(WANGDi,HUANG Pingming.Research on deck-tower connection of super long-span cable-stayed bridge[J].Journal of Zhengzhou university(engineering science),2008,29(4):112-115,144(in Chinese)).
    [7]韩万水,黄平明,兰燕.斜拉桥纵向设置粘滞阻尼器参数分析[J].地震工程与工程振动,2005,25(6):146-151.(HAN Wanshui,HUANGPingming,LAN Yan.Parametric analysis of cable-stayed bridge with longitudinally arranged viscous dampers[J].Journal of earthquake engineering and engineering vibration,2005,25(6):146-151(in Chinese)).
    [8]刘红绪.液体粘滞阻尼器在乌锡线黄河特大桥中的应用研究[J].铁道标准设计,2016,60(1):79-83.(LIU Hongxu.Application and research of fluid viscous damper to Yellow River extra-long bridge on Wuxi railway[J].Railway standard design,2016,60(1):79-83(in Chinese)).
    [9]巫生平,张超,房贞政.斜拉桥粘滞阻尼器设计方案及参数回归分析[J].桥梁建设,2014,44(5):21-26.(WU Shengping,ZHANGChao,FANG Zhenzheng.Design schemes and parameter regression analysis of viscous dampers for cable-stayed bridge[J].Bridge construction,2014,44(5):21-26(in Chinese)).
    [10]张永亮,董阳,朱尚清,等.大跨上承式铁路钢桁拱桥减震性能研究[J].铁道工程学报,2016,38(1):75-79.(ZHANG Yongliang,DONG Yang,ZHU Shangqing,et al.Research on the damping performance of long-span deck type steel truss railway arch bridge[J].Journal of railway engineering,2016,38(1):75-79(in Chinese)).
    [11]张常勇,王志英,王宏博.长联大跨连续钢桁梁桥减隔震设计研究[J].公路交通科技,2015,32(8):80-88.(ZHANG Changyong,WANG Zhiying,WANG Hongbo.Study on seismic mitigation and isolation design for a long-span continuous steel truss beam bridge[J].Journal of highway and transportation research and development,2015,32(8):80-88(in Chinese)).
    [12]中华人民共和国铁道部.铁路工程抗震设计规范:GB50111-2006[S].北京:中国铁道出版社,2009.(Ministry of Railways of the PRC.Code for seismic design of railway engineering:GB50111-2006[S].Beijing:China Railway Publishing House,2009(in Chinese)).
    [13]中铁第一勘察设计院集团有限公司.银川机场黄河特大桥设计(第二册)[Z].西安:银川至西安线兰局代建段施工图,2016.(China Railway Yiyuan Survey and Design Institute Group Co.Ltd.Design of the Yinchuan airport Huanghe River bridge(volume II)[Z].Xi’an:Yinchuan-Xi'an Line Lanzhou Construction Section Construction Drawing,2016(in Chinese)).
    [14]中华人民共和国铁道部.铁路桥涵地基和基础设计规范:TB10002.5-2005[S].北京:中国铁道出版社,2008.(Ministry of Railways of the PRC.Code for design on subsoil and foundation engineering:TB10002.5-2005[S].Beijing:China Railway Publishing House,2008(in Chinese)).
    [15]庄军生.桥梁支座[M].北京:中国铁道出版社,2015.(ZHUANGJunsheng.Bridge bearing[M].Beijing:China Railway Publishing House,2015(in Chinese)).
    [16]刘正楠,陈兴冲,马华军,等.高速铁路大跨长联连续梁桥减隔震方案优化研究[J].世界地震工程,2017,33(4):129-135.(LIUZhengnan,CHEN Xingchong,MA Huajun,et al.Optimization research on the seismic isolation schemes of a long unit and large span continuous bridge on high-speed railway[J].World earthquake engineering,2017,33(4):129-135(in Chinese)).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700