600MW机组凝汽器壳侧数值模拟与应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Shell Side of a 600MW Power Plant Condenser and its Application
  • 作者:钟达文 ; 孟继安 ; 朱晓磊 ; 李志信
  • 英文作者:ZHONG Da-wen;MENG Ji-an;ZHU Xiao-lei;LI Zhi-xin;Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy,North China Electric Power University;Key Laboratory of Thermal Science and Power Engineering of Ministry of Education,Tsinghua University;Shanghai Power Equipment Research Institute;
  • 关键词:凝结 ; 传热 ; 流动 ; 管束布置 ; 多孔介质
  • 英文关键词:condensation;;heat transfer;;flow;;tube arrangement;;porous medium
  • 中文刊名:QLJV
  • 英文刊名:Turbine Technology
  • 机构:华北电力大学非能动核能安全技术北京市重点实验室;清华大学热科学与动力工程教育部重点实验室;上海发电设备成套设计研究院;
  • 出版日期:2019-04-25
  • 出版单位:汽轮机技术
  • 年:2019
  • 期:v.61;No.239
  • 基金:国家自然科学基金(NO.51706068);; 国家重点基础研究发展计划项目(973计划)(NO.2013CB228301)
  • 语种:中文;
  • 页:QLJV201902012
  • 页数:5
  • CN:02
  • ISSN:23-1251/TH
  • 分类号:50-53+58
摘要
采用多孔介质模型数值研究了仿生双连树型管束及双峰型管束凝汽器壳侧的流动与传热特性。数模拟结果表明,仿生双连树型管束比双峰型管束的向心流动更明显,涡流更少且影响范围更小,空气聚集减弱,传热系数更为均匀。在600MW热负荷的设计工况下,HEI标准的设计背压应为4.9kPa,双峰型管束和仿生双连树型管束的数值模拟计算背压分别为5.37kPa和4.67kPa。邹县5号机组的工程试验测量仿生双连树型管束的背压为4.77kPa,与数值模拟结果相近,验证了数值模拟方法的可靠性。数值模拟和工程实践都验证了仿生双连树型管束具有显著的节能效果。
        In order to adapt the requirement of energy conservation and emissions reduction, Zouxian power plant underwent the technical reform of its 600 MW power plant condenser using the bionic double-tree-shaped tube bundle to replace the original double-peak-shaped tube bundle. The performance of these two tube arrangements was numerically analyzed using a porous medium model. The simulation results showed that, compared with double-peak-shaped tube bundle, the steam central-flow in the bionic double-tree-shaped tube bundle was more apparent, the vortices and the affected area were smaller, the air accumulation was reduced, the average heat transfer coefficient was more uniform. Under the design condition of 600 MW heat load, the designed back pressure of HEI standard is 4.9 kPa. The simulation results indicated that the back pressure of double-peak-shaped and bionic double-tree-shaped tube bundle was 5.37 kPa and 4.67 kPa, respectively. The measured back pressure(4.77 kPa) of the rebuilt No.5 condenser with bionic double-tree-shaped tube bundle was almost equal to the simulation results, which indicated that the numerical mode was reliable. The numerical simulation and experimental results both valified that the bionic double-tree-shaped tube bundle was better than double-peak-shaped tube bundle.
引文
[1] Heat Exchange Institute. Standards for Steam Surface Condensers [M]. Tenth ed.,Heat Exchange Institute,Inc.,Ohio,USA,2006.
    [2] S. Patankar,D Spalding. Heat Exchanger Design Theory Source Book [M]. McGRAW-Hill Book Company,New York,1974.155-176.
    [3] Butterworth D. The Development of a Model for Three-dimensional flow in Tube Bundles [J]. Int. J. of Heat and Mass Trans.,1978,21(2):253-256.
    [4] Mirzabeygi P,Zhang C. Three-dimensional Numerical Model for the Two-phase flow and Heat Transfer in Condensers [J]. Int. J. of Heat and Mass Trans.,2015,81:618-637.
    [5] Mirzabeygi P,Zhang C. Turbulence Modeling for the Two-phase flow and Heat Transfer in Condensers [J]. Int. J. of Heat and Mass Trans.,2015,89:229-241.
    [6] Hu H G,Zhang C. A New Inundation Correlation for the Prediction of Heat Transfer in Steam Condensers [J]. Numer. Heat Tr. A-Appl.,2008,54(1): 34-46.
    [7] Hu H G,Zhang C. A Modified k-ε Turbulence Model for the Simulation of Two-phase flow and Heat Transfer in Condensers [J]. Int. J. of Heat and Mass Trans.,2007,50(9-10):1641-1648.
    [8] 汪国山. 冷却水流径对双流程凝汽器热力性能的影响[J]. 汽轮机技术,2005,47(4):275-279.
    [9] Sato K,Taniguchi A,Kamada T,et al. New Tube Arrangement of Condenser for Power Stations [J]. JSME Int. J. Ser. B: Fluids Thermal Eng. 1998,41:752-758.
    [10] 汪国山,毛新青. 再析N-11220-1型凝汽器热力特性与改造措施[J]. 热能动力工程,2005,20 (1):80-84.
    [11] 张莉,黄兴华,陈汉平,等. 准三维数值仿真方法在凝汽器改造中的应用[J]. 动力工程,1999,19(3):65-70.
    [12] Ramón I S,González M P. Numerical Study of the Performance of a Church Window Tube Bundle Condenser [J]. Int. J. of Therm. Sci.,2001,40(2):195-204.
    [13] 曾辉,孟继安,李志信. 湍流参数对凝汽器数值模拟的影响[J]. 工程热物理学报,2011,32(10):1707-1710.
    [14] 钟达文,曾辉,孟继安,等. 凝汽器性能的数值模拟与布管原则 [J]. 工程热物理学报,2014,35(1):123-127.
    [15] Zeng H,Meng J A,Li Z. Numerical Study of a Power Plant Condenser Tube Arrangement [J]. Applied Thermal Engineering,2012,40(Supplement C):294-303.
    [16] 周兰欣,李富云,李卫华. 凝汽器壳侧准三维数值研究[J]. 中国电机工程学报,2008,28(23):25-30.
    [17] 杨文娟,孙奉仲,黄新元,等. 300MW 机组凝汽器汽侧换热性能的三维数值模拟与分析 [J]. 中国动力工程学报,2005,25(2):174-178.
    [18] 宫爱成,臧希年,秦广义,等. 大亚湾核电站凝汽器壳侧流场和传热特性的二维数值分析与改进[J]. 动力工程,2004,24(4):576-579.
    [19] 孟继安,李志信. 管束布置对凝汽器性能影响的分析及其应用[J]. 科学通报,2016,61 61(17): 1877-1888.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700