二氧化碳加氢制低碳烯烃技术进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in Carbon Dioxide Hydrogenation Technology for Preparing Low Carbon Olefins
  • 作者:史建公 ; 刘志坚 ; 刘春生
  • 英文作者:Shi Jiangong;Liu Zhijian;Liu Chunsheng;Engineering and Technology Research Institute,SINOPEC Catalyst Co.,Ltd.;SINOPEC Catalyst Co.,Ltd.;Sino-Global Energy;
  • 关键词:二氧化碳 ; 低碳烯烃 ; 热力学 ; 反应机理 ; 催化剂 ; 选择性 ; 电催化还原
  • 英文关键词:carbon dioxide;;low carbon olefin;;thermodynamics;;reaction mechanism;;catalyst;;selectivity;;electrocatalytic reduction
  • 中文刊名:SYZW
  • 英文刊名:Sino-Global Energy
  • 机构:中国石化催化剂有限公司工程技术研究院;中国石化催化剂有限公司;《中外能源》杂志社;
  • 出版日期:2019-02-15
  • 出版单位:中外能源
  • 年:2019
  • 期:v.24
  • 语种:中文;
  • 页:SYZW201902011
  • 页数:15
  • CN:02
  • ISSN:11-5438/TK
  • 分类号:64-78
摘要
以二氧化碳为原料加氢制备低碳烯烃,不但能够缓解二氧化碳排放带来的环保压力,更能实现二氧化碳资源的有效利用。从热力学方面考虑,低温、高压有利于低碳烯烃的生成,适宜的反应条件应该是温度573~673K、压力2.0~3.0MPa、H_2/CO_2=3,在该条件下二氧化碳的平衡转化率为72.8%~74.5%。二氧化碳直接加氢制低碳烯烃可分为两个步骤:逆水气转换反应和连续的费托合成。目前在二氧化碳制备低碳烯烃过程中,降低烷烃特别是甲烷的生成以及提高某一烯烃的选择性是研究的重点。关于反应机理的研究非常多,但结论并不完全一致,这是因为催化剂不同,对二氧化碳的吸附形式就可能不同,产生的中间体就不同,反应机理也就不同。单金属Fe基催化剂在二氧化碳加氢反应中表现出良好的催化性能,一直是首选的催化剂,通过引入其他组分形成双金属或多金属催化剂,其催化性能比单金属催化剂进一步提高。对于二氧化碳加氢制低碳烯烃反应,载体的作用同样不可忽视,甚至是非常重要的。通过电催化方法也可以将二氧化碳转化为低碳烯烃,由于电催化还原二氧化碳可在常温常压下进行,且使用廉价的Cu催化剂就可以将二氧化碳转化为碳氢化合物,因此其在二氧化碳利用方面表现出良好的前景。
        The hydrogenation of carbon dioxide for preparing low carbon olefins can not only relieve the environmental pressure caused by carbon dioxide emissions,but also effectively utilize carbon dioxide resources.From the thermodynamic point of view,low temperature and high pressure are beneficial to the formation of low carbon olefins.Suitable reaction temperature should be 573 ~673K,reaction pressure should be 2.0-3.0MPa,and the H_2/CO_2 should be 3.Under these conditions,the equilibrium conversion of carbon dioxide is72.8% ~74.5%.The direct hydrogenation of carbon dioxide to low carbon olefins can be divided into two steps,i.e.reverse water gas shift reaction and continuous Fischer-Tropsch synthesis.At present,during the preparation of low carbon olefins from carbon dioxide,reducing the formation of paraffin,especially methane,and improving the selectivity of a certain olefin are the focus of research.There are many studies on the re-action mechanism,but the conclusions are not exactly the same,because the catalysts are different,the carbon dioxide adsorption form may be different,the intermediates produced are different,and the reaction mechanisms are different.With good catalytic performance,single metal Fe-based catalyst has been the preferred catalyst in carbon dioxide hydrogenation reaction.By introducing other components to form bimetallic or polymetallic catalyst,its catalytic performance can be further improved.For the hydrogenation reaction of carbon dioxide to low carbon olefins,the role of the carrier cannot be ignored,and even it is very important.Carbon dioxide can also be converted into low carbon olefins by electrocatalysis.Since electrocatalytic reduction of carbon dioxide can be carried out at normal temperature and pressure,and carbon dioxide can be converted into hydrocarbons using an inexpensive Cu catalyst,it has good prospects in the utilization of carbon dioxide.
引文
[1]WANG Wei,WANG Shengping,MA Xinbin,et al.Recent Advances in Catalytic Hydrogenation of Carbon Dioxide[J].Chemical Society Reviews,2011,40(7):3703-3727.
    [2]丁佳.北理工发布《中国能源报告(2018)》[N].中国科学报,2019-01-15(4).
    [3]达器.2018年海洋升温又创新高[N].北京日报,2019-01-23(13).
    [4]潘希.《2018年中国气候公报》发布[N].中国科学报,2019-01-24(4).
    [5]SATTHAWONG R,KOIZUMI N,SONG C S,et al.Light Olefin Synthesis from CO2Hydrogenation over K-promoted Fe-Co Bimetallic Catalysts[J].Catalysis Today,2015,251:34-40.
    [6]刘志坚,史建公,赵良英,等.二氧化碳捕集技术进展[J].中外能源,2014,19(6):1-11.
    [7]JIANG Z,XIAO T,KUZNETSOV V L,et al.Turning Carbon Dioxide into Fuel[J].Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences,2010,368:3343-3364.
    [8]MIKKELSEN M,J覫RGENSEN M,KREBS F C.The Teraton Challenge.A Review of Fixation and Transformation of Carbon Dioxide[J].Energy&Environmental Science,2010,3(1):43-81.
    [9]杨皓,白玉湖.埋存二氧化碳法置换天然气水合物研究进展及启示[J].内蒙古石油化工,2012(18):1-5.
    [10]许兰兵,李奇.注入二氧化碳提高天然气采收率技术研究进展[J].内蒙古石油化工,2011(17):107-110.
    [11]刘高山.船舶消防模拟舱的设计与在培训中的应用[J].上海海运学院学报,2000,21(2):45-51.
    [12]WEATHERBEE G D,BARTHOLOMEW C H.hydrogenation of CO2on GroupⅧMetals:Ⅳ.Specific Activities and Selectivities of Sillca-supported Co,Fe,and Ru[J].Journal of Catalysis,1984,87(2):352-362.
    [13]张树生.CO2气肥新装置在设施农业中的应用研究[D].杭州:浙江大学,2004.
    [14]YESGAR P W,SHEINTUCH M.Nickel-catalyzed Methanation Reactions Studied with an in situ Magnetic Induction Method:Experiments and Modeling[J].Journal of Catalysis,1991,127(2):576-594.
    [15]刘晓放,何良年.二氧化碳的高值化利用[J].科学,2018,70(1):14-19.
    [16]孙洪志,王倩,宋名秀,等.CO2化学利用的研究进展[J].化工进展,2013,32(7):1666-1672.
    [17]DU G A,LIM S Y,YANG Y H,et al.Methanation of Carbon Dioxide on Ni-incorporated MCM-41 Catalysts:The Influence of Catalyst Pretreatment and Study of Steady-State Reaction[J].Journal of Catalysis,2007,249(2):370-379.
    [18]CAO F H,LIU D H,HOU Q S,et al.Thermodynamic Analysis of CO2Direct Hydrogenation Reactions[J].Journal of Natural Gas,2001,10(1):24-33.
    [19]刘业奎,王黎,侯栋,等.二氧化碳加氢合成低碳烯烃反应平衡体系热力学研究[J].催化学报,2004,25(3):210-218.
    [20]定明月,杨勇,相宏伟,等.费托合成Fe基催化剂中铁物相与活性的关系[J].催化学报,2010,31(9):1145-1150.
    [21]梁兵连,段洪敏,侯宝林,等.二氧化碳加氢合成低碳烯烃的研究进展[J].化工进展,2015,34(10):3746-3754.
    [22]RIEDEL T,SCHAUB G,JUN K W,et al.Kinetics of CO2Hydrogenation on a K-promoted Fe Catalyst[J].Industrial&Engineering Chemistry Research,2001,40(5):1355-1363.
    [23]JUN K W,ROH H S,KIM K S,et al.Ctalytic Investigation for Fischer-Tropsch synthesis from Bio-mass Derived Syngas[J].Applied Catalysis A:General,2004,259(2):221-226.
    [24]SCHULZ H,CLAEYS M.Kinetic Modelling of Fischer-Tropsch Product Distributions[J].Applied Catalysis A:General,1999,186(1/2):91-107.
    [25]TEMKIN O N,ZEIGARNIK A V,KUZMIN A E,et al.Construction of the Reaction Networks for Heterogeneous Catalytic Reactions:Fischer-Tropsch Synthesis and Related Reactions[J].Russian Chemical Bulletin,2002,51(1):1-36.
    [26]BLYHOLDER G.Molecular Orbital View of Chemisorbed Carbon Monoxide[J].The Journal of Physical Chemistry,1964,68(10):2772-2777.
    [27]PICHLER H,SCHULZ H.Recent Results in Synthesis of Hydrocarbons from CO and H2[J].Chemical Engineering Technology,1970,12:1160-1174.
    [28]BLYHOLDER G,ALLEN M C.Infrared Spectra and Molecular Orbital Model for Carbon Monoxide Adsorbed on Metals[J].Journal of the American Chemical Society,1969,91(12):3158-3162.
    [29]常杰,滕波涛,白亮,等.Fischer-Tropsch合成中的CO活化机理[J].煤炭转化,2005,28(2):1-6.
    [30]CIOBLCO I M.The Molecular Basis of the Fischer-Tropsch Reaction[D].Eindhoven:Eindhoven University of Technology,2002.
    [31]NAITO S,GUPTA N M,KAMBLE V S,et al.The Recycle Using for CO2in 21 Century[J].Catalysis,1980,66(1):101-106.
    [32]索掌怀,寇元,王弘立.还原条件对CO2加氢用Fe/TiO2催化剂结构的影响[J].催化学报,2001,22(4):348-352.
    [33]徐龙伢,王清遐,梁东白,等.CO2加氢制低碳烯烃的Fe/Silicalite-2催化剂研究[J].天然气化工,1995,20(5):6-10.
    [34]WILLAUER H D,ANANTH R,OLSEN M T,et al.Modeling and Kinetic Analysis of CO2Hydrogenation Using a Mn and K-promoted Fe Catalyst in a Fixed-bed Reactor[J].Journal of CO2Utilization,2013,3:56-64.
    [35]ZHI P L,HU P.Catalytic Role of Gold in Gold-Based Catalysts:A Density Functional Theory Study on the CO Oxidation on Gold[J].Journal of the American Chemical Society,2002,124(49):14770-14779.
    [36]LEE S B,KIM J S,LEE W Y,et al.Product Distribution Analysis for Catalytic Reduction of CO2in a Bench Scale Fixed Bed Reactor[C]//Proceedings of 7ththe International Conference on Carbon Dioxide Utilization.Studies in Surface Science and Catalysis,2004:8-73.
    [37]TORRES GALVIS H S,BITTER J H,KHARE C B,et al.Supported Iron Nanoparricles as Catalysts for Sustainable Pro duction of Lower Olefins[J].Science,2012,335(6070):835-838.
    [38]DORNER R W,HARDY D R,WILLIAMS F M,et al.Influence of Gas Feed Composition and Pressure on the Catalytic Conversion of CO2to Hydrocarbons Using a Traditional CobaltBased Fischer-Tropsch Catalyst[J].Energy&Fuels,2009,23(8):4190-4195.
    [39]李梦青,邓国才,陈荣娣,等.FeCoMnK/BeO催化剂上CO2加氢合成低碳烯烃的反应性能和原位FT-IR研究[J].催化学报,2000,21(1):71-74.
    [40]HU B,FRUEH S,GARCES H F,et al.Selective Hydrogenation of CO2and CO to Useful Light Olefins over Octahedral Molecular Sieve Manganese Oxide Supported Iron Catalysts[J].Applied Catalysis B:Environmental,2013,132:54-61.
    [41]KUMMER J,DEWITT T,EMMETT P,et al.Some Mechanism Studies on the Fischer-Tropsch Synthesis Using C14[J].Journal of the American Chemical Society,1948,70(11):3622-3642.
    [42]卢振举,林培滋,徐长海,等.CO2+H2直接合成低碳烯烃的研究[J].天然气化工,1993,18(1):23-27.
    [43]黄友梅,翁善至,孟宪波,等.担载型铁金属簇催化剂催化CO2加氢制低碳烯烃的研究[J].分子催化,1995,9(1):78-80.
    [44]SUO Zhanghuai,KOU Yuan.Synthesis of Light Hydrocarbons from Carbon Dioxide and Hydrogen over Fe/ZrO2or Fe/TiO2Catalyst[J].Journal of Natural Gas Chemistry,2000,9(4):283-290.
    [45]索掌怀,寇元,王弘立.助剂钾对二氧化碳加氢反应活性及产物分布的影响[J].分子催化,1997,11(1):45-49.
    [46]游震亚,邓卫平,张庆红,等.非负载型铁催化剂上二氧化碳加氢制低碳烯烃[J].催化学报,2013,34(5):956-963.
    [47]王湘波.二氧化碳加氢合成低碳稀烃催化剂的研究[D].长春:长春工业大学,2012.
    [48]沈荷红.二氧化碳加氢制烃的铁基催化剂制备研究[D].杭州:浙江工业大学,2016.
    [49]刘歆颖,邓国才,郭先芝.铁镍双金属催化剂用于二氧化碳加氢合成低碳烯烃的研究[J].燃料化学学报,1999,27(5):447-450.
    [50]刘歆颖,邓国才,陈荣悌,等.铁钴双金属催化剂上二氧化碳加氢合成低碳烯烃[J].燃料化学学报,1999,27(2):145-149.
    [51]苏春彦,檀建群,王承学.铁基催化剂上二氧化碳加氢合成低碳烯烃的研究[J].天然气化工(C1化学与化工),2013,38(3):34-38,47.
    [52]李婕.碳材料负载Fe催化CO2加氢制烃类的研究[D].上海:上海师范大学,2014.
    [53]邓国才,李梦青,穆瑞才,等.稀土对二氧化碳加氢合成低碳烯烃催化剂活性的影响[J].中国稀土学报,1997,15(3):278-280.
    [54]孟宪波,黄友梅,党中远,等.CO2/H2合成低碳烯烃催化剂的制备方法及反应条件[J].石油化工,1996,25(4):267-270.
    [55]张玉龙,邵光印,张征湃,等.活化气氛对CO2加氢制取低碳烯烃Fe-K催化剂构-效关系[J].化工学报,2018,69(2):690-698.
    [56]徐龙伢,王清遐,林励吾,等.Fe/Silicalite-2催化剂表面CO2加氢反应性能的研究[J].燃料化学学报,1997,25(2):170-174.
    [57]徐龙伢,王清遐,林励吾,等.CO2加氢制低碳烯烃Fe/Silicalite-2催化剂研究Ⅱ.催化剂制备研究[J].天然气化工,1997,22(4):10-14.
    [58]徐龙伢,王清遐,林励吾,等.CO2加氢制低碳烯烃Fe/Silicalite-2催化剂研究Ⅲ.K-Fe-MnO/Silicalite-2催化剂性能考察[J].天然气化工,1997,22(4):14-17.
    [59]李梦青,邓国才,陈荣悌.FeCoK催化剂上二氧化碳加氢合成低碳烯烃的研究[J].河北工业大学学报,2000,29(2):39-43.
    [60]SATTHAWONG R,KOIZUMI N,SONG C S,et al.Bimetallic Fe-Co Catalysts for CO2Hydrogenation Iron-manganese Catalyst[J].Catalysis Communications,2010,11(9):816-819.
    [61]SATTHAWONG R,KOIZUMI N,SONG C,et al.Comparative Study on CO2Hydrogenation to Higher Hydrocarbons over Fe-based Bimetallic Catalysts[J].Topics in Catalysis,2014,57:588-594.
    [62]杨颖.非热等离子体催化CO2加氢反应研究[D].大连:大连理工大学,2010.
    [63]季福武.热液条件下CO2与H2反应产烃的实验研究[D].广州:中国科学院广州地球化学研究所,2006.
    [64]陈传耀,郝西维,吴嘉州,等.CO2加氢制低碳烯烃反应中引入耦合反应的影响研究[J].华北电力大学学报:2009,36(3):27-32.
    [65]WANG J J,YOU Z,ZHANG Q,et al.Synthesis of Lower Olefins by Hydrogenation of Carbon Dioxide over Supported iron Catalysts[J].Catalysis Today,2013,215:186-193.
    [66]YOU Z Y,DENG W P,ZHANG Q H,et al.Hydrogenation of Carbon Dioxide to Light Olefins over Non-supported Iron Catalyst[J].Chinese Journal of Catalysis,2013,34(5):956-963.
    [67]ZHANG J,LU S,SU X,et al.Selective Formation of Light Olefins from CO2Hydrogenation over Fe-Zn-K Catalysts[J].Journal of CO2Utilization,2015,12:95-100.
    [68]XU L,WANG Q,LIANG D,et al.The Promotions of MnO and K2O to Fe/silicalite-2 Catalyst for the Production of Light Alkenes from CO2Hydrogenation[J].Applied Catalysis A:General,1998,173(1):19-25.
    [69]WANG Haozhi,NIE Xiaowa,GUO Xinwen,et al.A Computational Study of Adsorption and Activation of CO2and H2over Fe(100)Surface[J].Journal of CO2Utilization,2016,15:107-114.
    [70]AN Xia,WU Baoshan,HOU Wenjuan,et al.The Negative Effect of Residual Sodium on Iron-based Catalyst for Fischer-Tropsch Synthesis[J].Journal of Molecular Catalysis A:Chemical,2007,263(1/2):266-272.
    [71]WEI Jian,SUN Jian,WEN Zhiyong,et al.New Insight into the Effect of Sodium on Fe3O4-based Nanocatalysts for CO2Hydrogenation to Light Olefins[J].Catalysis Science Technology.,2016,6:4786.
    [72]TORRES GALVIS H M,BITTER J H,KHARE C B,et al.Supported Iron Nanoparticles as Catalysts for Sustainable Production of Lower Olefins[J].Science,2012,335:835-838.
    [73]DRAB D M,WILLAUER H D,OLSEN M T,et al.Hydrocarbon Synthesis from Carbon Dioxide and Hydrogen:A two-step Process[J].Energy&Fuels,2013,27(11):6348-6354.
    [74]LI Tingzhen,YANG Yong,ZHANG Chenghua,et al.Effect of Manganese Incorporation Manner on an Iron-Based Catalyst for Fischer-Tropsch Synthesis[J].Journal of Natural Gas Chemistry,2007,16(3):244-251.
    [75]VENTER J,KAMINSKY M,GEOFFROY G L,et al.Carbonsupported Fe-Mn and K-Fe-Mn Clusters for the Synthesis of C2-C4Olefins from CO and H2:Ⅱ.Activity and Selectivity Maintenance and Regenerability[J].Journal of Catalysis,1987,105(1):155-162.
    [76]CHEW L M,RULAND H,SCHULTE H J,et al.CO2Hydrogenation to Hydrocarbons over Iron Nanoparticles Supported on Oxygen-functioanlized Carbon Nanotubes[J].Journal of Chemical Sciences,2014,126(2):481-486.
    [77]KANG S-H,BAE J W,WOO K-J,et al.ZSM-5 Supported Iron Catalysts for Fischer-Tropsch Production of Light Olefin[J].Fuel Processing Technology,2010,91(4):399-403.
    [78]VISCONTI C G,MARTINELLI M,FALBO L,et al.CO2Hydrogenation to Lower Olefins on a High Surface area K-promoted Bulk Fe-catalyst[J].Applied Catalysis B:Environmental,2017,200:530-542.
    [79]HU B X,FRUEH S,SUIB S L,et al.Selective Hydrogenation of CO2and CO to Useful Light Olefins over Octahedral Molecular Sieve Manganese Oxide Supported Iron Catalysts[J].Applied Catalysis B:Environmental,2013,132-133:54-61.
    [80]杨爱梅.SAPO-34分子筛的改性及其在CO2加氢制备低碳烯烃中的催化性能[D].兰州:西北师范大学,2015.
    [81]唐小华,李辉,杨爱梅,等.咪唑/镍(Ⅱ)改性SAPO-34的制备及其催化CO2加氢制备乙烯[J].无机材料学报,2017,32(11):1209-1214.
    [82]田世超,韩丽丽,侯俊琦,等.二氧化碳加氢一步法制低碳烯烃催化剂的研究[J].辽宁石油化工大学学报,2011,31(3):4-7,11.
    [83]王鹏飞,查飞,常玥.CuO-ZnO/(SAPO-34)-高岭土催化CO2加氢合成低碳烯烃[J].精细化工,2017,34(6):662-668.
    [84]刘蓉,王鹏飞,查飞,等.稀土改性SAPO-34分子筛的制备及其在CO2加氢合成低碳烯烃中的催化性能[J].精细化工,2016,33(4):413-418,424.
    [85]KUHL K P,CAVE E R,ABRAM D N.New Insights into the Electrochemical Reduction of Carbon Dioxide on Metallic Copper Surfaces[J].Energy Environmental Science,2012,5:7050-7059.
    [86]HORI Y,KIKUCHI K,SUZUKI S.Production of CO and CH4in Electrochemical Reduction of CO2at Metal Electrodes in Aqueous Hydrogencarbonate Solution[J].Chemistry Letters,1985,14(11):1695-1698.
    [87]MIZUNO T,NAITOH A,OHTA K.Electrochemical Reduction of CO2in Methanol at-30℃[J].Journal of Electroanalytical Chemistry,1995,391:199-201.
    [88]MIZUNO T,OHTA K,KAWAMOTO M,et al.Electrochemical Reduction of CO2on Cu in 0.1 M KOH-Methanol[J].Energy Source,1997,19(3):249-257.
    [89]ITO K,IKEDA S,IIDA T,et al.Electrochemical Reduction of Carbon Dioxide Dissolved under High Pressure.Ⅲ.In Nonaqueous Electrolytes[J].Denki Kagaku,1982,50:463-469.
    [90]ITO K,IKEDA S,YAMAUTI N,et al.Electrochemical Reduction Products of Carbon Dioxide at Some Metallic Electrodes in Nanoqueous Electrolytes[J].Bulletin of the Chemical Society of Japan,1985,58(10):3027-3028.
    [91]IKEDA S,TAKAGI T,ITO K,et al.Selective Formation of Formic Acid,Oxalic Acid,and Carbon Monoxide by Electrochemical Reduction of Carbon Dioxide[J].Bulletin of the Chemical Society of Japan,1987,60(7):2517-2522.
    [92]HOCHGESAND G."Rectisol and Purisol"European and Japanese Chemical Industrials Symposium[J].Industrial&Engineering Chemistry Research,1970,62(7):37-43.
    [93]KANECO S,LIBA K,OHTA K,et al.Electrochemical Reduction of CO2on Au in KOH+Methanol at Low Temperature[J].Journal of Electroanalytical Chemistry,1998,441(1/2):215-220.
    [94]KANECO S,LIBA K,HIEI N,et al.Electrochemical Reduction of Carbon Dioxide to Ethylene with High Faradaic Efficiency at a Cu Electrode in CsOH/Methanol[J].Electrochimica Acta,1999,44(26):4701-4706.
    [95]KANECO S,KATSUMATA H,SUZUKI T,et al.Electrochemical Reduction of Carbon Dioxide to Ethylene at a Copper Electrode in Methanol Using Potassium Hydroxide and Rubidium Hydroxide Supporting Electrolytes[J].Electrochimica Acta,2006,51:3316-3321.
    [96]RESKE R,MISTRY H,BEHAFARID F,et al.Particle Size Effects in the Catalytic Electroreduction of CO2on Cu Nanoparticles[J].Journal of the American Chemical Society,2014,136(19):6978-6986.
    [97]CHEN C S,HANDOKO A D,WAN J H,et al.Stable and Selective Electrochemical Reduction of Carbon Dioxide to Ethylene on Copper Mesocrystals[J].Catalysis Science&Technology,2015,5:161-168.
    [98]ZHU Wenlei,ZHANG Yinjia,ZHANG Hongyi,et al.Active and Selective Conversion of CO2to CO on Ultrathin Au nanowires[J].Journal of the American Chemical Society,2014,136(46):16132-16135.
    [99]MISTRY H,GASQUE A S V,BONIFACIO C S,et al.Highly Selective Plasma-activated Copper Catalysts for Carbon Dioxide Reduction to Ethylene[J].Nature Communications,2016,7:12123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700