不同粒径超顺磁性氧化铁纳米粒子的合成及其在交变磁场中的磁热效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis of superparamagnetic iron oxide nanoparticles with different particle sizes and its magneto-calorific effects under alternating current magnetic field
  • 作者:韩栋 ; 张宝林 ; 苏礼超 ; 韩贵华 ; 汪晟
  • 英文作者:HAN Dong;ZHANG Bao-lin;SU Li-chao;HAN Gui-hua;WANG Sheng;State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing,Guilin University of Technology;College of Materials Science and Engineering,Guilin University of Technology;
  • 关键词:超顺磁性氧化铁纳米粒子 ; 粒径 ; 交变磁场 ; 比能量吸收率 ; 磁热效应
  • 英文关键词:SPIONs;;particle size;;alternating current magnetic field(ACMF);;specific absorption rate;;magneto-calorific effect
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:桂林理工大学广西有色金属及特色材料加工省部共建国家重点实验室培育基地;桂林理工大学材料科学与工程学院;
  • 出版日期:2019-04-23 16:43
  • 出版单位:材料工程
  • 年:2019
  • 期:v.47;No.431
  • 基金:国家自然科学基金项目(51562007)
  • 语种:中文;
  • 页:CLGC201904011
  • 页数:7
  • CN:04
  • ISSN:11-1800/TB
  • 分类号:88-94
摘要
采用多醇热解法制备3种不同粒径的超顺磁性氧化铁纳米粒子(SPIONs),合成的SPIONs含Fe_3O_4晶相,分散性好,平均粒径分别为8.7,12.6nm和15.3nm,且在300K下,3种SPIONs均呈超顺磁性。将不同粒径、不同浓度的SPIONs水分散液置于频率为425kHz、磁场强度为5.3kA·m~(-1)的交变磁场(ACMF)中进行升温实验。探讨比能量吸收率值与SPIONs粒径之间的关系,计算布朗弛豫时间及尼尔弛豫时间。结果表明:SPIONs水分散液的升温速率随SPIONs的粒径增大而增大,初始温度为20℃时,粒径为8.7,12.6nm和15.3nm的SPIONs水分散液(2mg·mL~(-1))在480s内温度分别升高了25,27,35℃。尼尔弛豫时间比布朗弛豫时间小,说明磁热效应主要来自于尼尔弛豫损耗。SPIONs粒径越大,比能量吸收率SAR值越高,最高可达810W·g~(-1),且SAR值与SPIONs水分散液的浓度呈负相关关系。
        Three kinds of superparamagnetic iron oxide nanoparticles(SPIONs) with different particle sizes prepared by polyol pyrolysis, and the SPIONs contained Fe_3O_4 crystal phase with average particle sizes of 8.73, 12.57 nm and 15.25 nm. The nanoparticles have relatively uniform size distribution and good dispersion property and samples were all superparamagnetic at 300 K. The aqueous dispersion of SPIONs with different particle sizes and concentrations were treated in alternating current magnetic field(ACMF) with a frequency of 425 kHz and a magnetic field amplitude of 5.3 kA·m~(-1) to conduct heating experiments.The relationship between the specific absorption rate(SAR) and the particle sizes of the samples were discussed. The Brownian relaxation time and Neel relaxation time were calculated. The results show that the heating rate of the aqueous samples increases with the increase of the particle sizes. When the initial temperature is 20℃, the increments of the temperature of 25, 27℃ and 35℃ in 480 seconds are measured for the three nanoparticle solutions(2 mg·mL~(-1)) with nanoparticle sizes of 8.7, 12.6 nm and 15.3 nm, respectively. The Neel relaxation time is shorter than the Brownian relaxation time, indicating that Neel relaxation dominates heating in this system. The larger the particle size is, the higher the SAR value will be, and the highest SAR value is 810 W·g~(-1). The SAR value is negatively correlated with the concentration of the aqueous dispersion.
引文
[1] ROSENSWEIG R E. Heating magnetic fluid with alternating magnetic field[J]. Journal of Magnetism and Magnetic Materials,2002,252(1/3):370-374.
    [2] GUPTA J,PRAKASH A,JAISWAL M K,et al. Superparamag-netic iron oxide-reduced graphene oxide nanohybrid-a vehicle for targeted drug delivery and hyperthermia treatment of cancer[J]. Journal of Magnetism and Magnetic Materials,2018,448:332-338.
    [3] HAYASHI K,NAKAMURA M,SAK-AMOTO W,et al. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treat-ment[J]. Theranostics,2013,3(6):366-376.
    [4] ZHANG C,JUGOLD M,WOENNE E C,et al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superpara-magnetic iron oxide particles using a clinical 1.5-T magnetic res-onance scanner[J]. Cancer Research,2007,67(4): 1555-1562.
    [5] STEENLAND H W,KO S W,WU L J,et al. Hot receptors in the brain[J]. Molecular Pain,2006,2(1):34.
    [6] CHEN R,ROMERO G,CHRISTIANSEN M G,et al. Wireless magnetothermal deep brain stimulation[J]. Science,2015,347(6229):1477-1480.
    [7] XIE J,YAN C,YAN Y,et al. Multi-modal Mn-Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperther-mia: a comparison of passive and active targeting effects[J]. Nan-oscale,2016,8(38):16902-16915.
    [8] HUANG Y,MAO K,ZHANG B,et al. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual targetsp-ecific drug delivery and MRI in cancer theranostics[J]. Materials Science & Engineering C, Materials for Biological Applications,2017,70:763-771.
    [9] CELIK O,CAN M M,FIRAT T. Size dependent heating ability of CoFe2O4 nanoparticles in AC magnetic field for magnetic nano-fluid hyperthermia[J]. Journal of Nanoparticle Research,2014,16(3):1-7.
    [10] WANG J, ZHANG B, WANG L, et al. One-pot synthesis of water-soluble superparamagnetic iron oxide nanoparticles and their MRI contrast effects in the mouse brains[J]. Materials Science and Engineering:C,2015,48:416-423.
    [11] ZHANG B, TU Z, ZHAO F, et al. Superparamagnetic iron oxide nanoparticles prepared by using an improved polyol method[J]. Applied Surface Science,2013,266(2):375-379.
    [12] 王军,张宝林,赵方圆,等.聚乙二醇/聚乙烯亚胺修饰的超顺磁性氧化铁磁共振造影剂的性能[J]. 材料研究学报,2013,27(5):508-514. WANG J,ZHANG B L,ZHAO F Y,et al. Properties of SPIO magnetic resonance imaging contrast agents modified with poly(ethylene glycol) and poly(ethylene imine)[J]. Chinese Journal of Materials Research,2013,27(5):508-514.
    [13] 赵海涛,马瑞廷,刘瑞萍.热分解法制备Ni0.5Zn0.5Fe2O4纳米颗粒[J].材料工程,2017,45(9):81-85. ZHAO H T,MA R T,LIU R P. Synthesis of Ni0.5Zn0.5Fe2O4 nanoparticles by thermal decomposition method[J]. Journal of Materials Engineering,2017,45(9):81-85.
    [14] XIE S,ZHANG B,WANG L,et al. Superparamagnetic iron oxide nanoparticles coated with different polymers and their MRI contrast effects in the mouse brains[J]. Applied Surface Scien-ce,2015,326:32-38.
    [15] ZHAO Z,ZHOU Z,BAO J,et al. Octapod iron oxide nanopar-ticles as high-performance T2contrast agents for magnetic reson-ance imaging[J]. Nature Communications,2013,4:2266.
    [16] SUN S, ZENG H. Monodisperse MFe2O4(M = Fe, Co, Mn) nanoparticles[J]. Journal of the American Chemical Society, 2004,126(1):273-279.
    [17] LI Z,CHEN H,BAO H,et al. One-pot reaction to synthesize water-soluble magnetite nanocrystals[J]. Chemistry of Mater-ials,2004,16(8):1391-1393.
    [18] MORALES M P,VEINTEMILLAS-VERDAGUER S,MONT-ERO M I, et al. Surface and internal spin canting in γ-Fe2O3 nanoparticles[J]. Chemistry of Materials,1999,11(11):3058-3064.
    [19] SONG Y,WANG R,RONG R,et al. Synthesis of well-dispersed aqueous-phase magnetite nanoparticles and their metabolism as an MRI contrast agent for the reticuloendothelial system[J]. European Journal of Inorganic Chemistry,2011(22):3303-3313.
    [20] 刘杰,高福平,唐劲天. 肿瘤主动靶向磁性纳米粒子研究现状及其在肿瘤热疗中的应用[J].科技导报,2010,28(19):108-112. LIU J, GAO F P, TANG J T.Active targeting magnetic iron oxide nanoparticles:current status and novel applications in tumor hyperthermia[J]. Science & Technology Review,2010,28(19):108-112.
    [21] NEMATI Z,SALILI S M,ALONSO J,et al. Superparamagnetic iron oxide nanodiscs for hyperthermia therapy: does size matter?[J]. Journal of Alloys and Compounds,2017,714:709-714.
    [22] COFFEY W T,FANNIN P C. Internal and Brownian mode-coupling effects in the theory of magnetic relaxation and ferroma-gnetic resonance of ferrofluids[J]. Journal of Physics:Condensed Matter,2002,14:3677-3692.
    [23] PINEIRO-REDONDO Y,BANOBRE-LOPEZ M,PARDINAS-BLANCO I,et al. The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles[J]. Nanoscale Research Letters,2011,6(1):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700