高硫石油焦分级多孔炭的制备及电容脱盐性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and capacitive deionization performance of high sulfur petroleum coke hierarchical porous carbon
  • 作者:郑亮 ; 武立强 ; 王亚丽 ; 甘瑞辉 ; 马昌 ; 史景利
  • 英文作者:ZHENG Liang;WU Li-qiang;WANG Ya-li;GAN Rui-hui;MA Chang;SHI Jing-li;State Key Laboratory of Separation Membranes and Membrane Processes,Tianjin Polytechnic University,School of Material Science and Engineering;
  • 关键词:石油焦 ; ; 多孔炭 ; 电容脱盐
  • 英文关键词:petroleum coke;;sulfur;;porous carbon;;capacitive deionization
  • 中文刊名:TASU
  • 英文刊名:Carbon
  • 机构:分离膜与膜过程国家重点实验室天津工业大学材料科学与工程学院;
  • 出版日期:2019-03-15
  • 出版单位:炭素
  • 年:2019
  • 期:No.178
  • 基金:国家自然科学基金(51502201);; 天津市自然科学基金(16JCQNJC06300);; 中科院炭材料重点实验室开放基金(KLCMKFJJ1708)
  • 语种:中文;
  • 页:TASU201901001
  • 页数:8
  • CN:01
  • ISSN:23-1172/TQ
  • 分类号:5-11+45
摘要
电容脱盐是基于双电层原理的新兴脱盐技术,由于其具有所需电压低、能量消耗小和无二次污染等优点受到研究学者的广泛关注。多孔炭具有较高的比表面积、孔结构可调、物理和化学性质稳定等优点,常被用于电容脱盐的电极材料。多孔炭中非炭材料的引入,能为材料提供一定的赝电容,提高材料的电容脱盐性能。本文探究了含硫多孔炭对电容脱盐的影响,实验以高硫石油焦为炭前驱体,KOH为活化剂,在高温下一步活化得到分级多孔炭,并对多孔炭的电容脱盐性能进行了测定。结果表明,高硫石油焦KOH活化后,孔体积和比表面积得到很大的提高,而硫含量随着KOH添加量的增加逐渐降低直至为零。通过分级多孔炭电容脱盐的测试,发现微孔不利于电容脱盐,介孔更利于电容脱盐。与不含硫官能团的ACs进行对比,含硫官能团对脱盐具有增益效果,AC-2电极单循环脱盐量达到5.00 mg/g,单位比表面积的脱盐量达到0.015 mg/m~2。
        Capacitive desalination is an emerging desalination technology based on the principle of electric double layer. Due to its low voltage requirement, low energy consumption and no secondary pollution, it has received extensive attention. Porous carbon is often used as electrodematerial for capacitive desalination due to its high specific surface area, adjustable pore structure, and stable physical and chemical properties. Introduction of non-carbon materials in porous carbon can provide a certain pseudocapacitance and improve the capacitive desalination performance of the material. In this work, the effect of sulfur-containing porous carbon on the capacitive desalination was investigated. The experiment used high-sulfur petroleum coke as the carbon precursor and KOH as the activator. Hierarchical porous carbon was obtained by activation at high temperature, and the capacitance desalination performance of porous carbon was measured. The results show that the pore volume and specific surface area are greatly improved after the activation,and the sulfur content gradually decreases to zero with the increase of KOH addition. Through the desalination test, it is founded that micropores are not conducive to capacitive desalination, and mesopores are more conducive to capacitive desalination. Compared with the sulfur-free functional ACs, the sulfur-containing functional group has a gain effect on desalination, the single cycle deionization capacity and deionization capacity of per specific surface area of AC-2 reach 5.00 mg/g and 0.015 mg/m~2, respectively.
引文
[1] ELIMELECH M, PHILLIP W A. The future of seawater desalination: Energy, technology, and the environment [J]Science, 2011, 333(6043): 712-717.
    [2] BASTA A H, EL-SAIED H. Enhanced transport properties and thermal stability of agro-based ro-membrane for desalination of brackish water [J].Journal of Membrane Science, 2008, 310(1-2): 208-218.
    [3] MOONKHUM M, LEE Y G, LEE Y S, et al. Review of seawater natural organic matter fouling and reverse osmosis transport modeling for seawater reverse osmosis desalination[J].Desalination and Water Treatment, 2012, 15(1-3): 92-107.
    [4] YERMIYAHU U, TAL A, BEN-GAL A, et al. Environmental science. Rethinking desalinated water quality and agriculture [J].Science, 2007, 318(5852): 920-921.
    [5] BANASIAK L J, KRUTTSCHNITT T W, SCH FER A IDesalination using electrodialysis as a function of voltage and salt concentration [J].Desalination, 2007, 205(1-3): 38-46.
    [6] 王方. 电去离子净水技术 [J].膜科学与技术, 2001, 21(2)50-54.
    [7] 钟颖. 活性炭纤维及其改性后的电极电吸附脱盐研究[D]. 中山大学, 2009.
    [8] 刘海静, 张鸿涛, 孙晓慰. 电吸附法去除地下水中离子的试验研究 [J].中国给水排水, 2003, 19(11): 36-38.
    [9] PORADA S, ZHAO R, VAN DER WAL A, et al. Review on the science and technology of water desalination by capacitive deionization [J].Progress in Materials Science2013, 58(8): 1388-1442.
    [10] SUSS M E, PORADA S, SUN X, et al. Water desalination via capacitive deionization: What is it and what can we expect from it? [J].Energy & Environmental Science, 20158(8): 2296-2319.
    [11] KIM Y J, CHOI J H. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer [J].Water Research, 2010, 44(3): 990-996.
    [12] GOH P S, ISMAIL A F, NG B C. Carbon nanotubes for desalination: Performance evaluation and current hurdles [J].Desalination, 2013, 308(1): 2-14.
    [13] LIU D, SHEN J, LIU N, et al. Preparation of activated carbon aerogels with hierarchically porous structures for electrical double layer capacitors [J].Electrochimica Acta, 2013, 89: 571-576.
    [14] LIU J, WANG S, YANG J, et al. ZnCl2 activated electrospun carbon nanofiber for capacitive desalination [J].Desalination, 2014, 344: 446-453.
    [15] MAC AS-GARC A A, G MEZ-SERRANO V, ALEXANDRE-FRANCO M F, et al. Adsorption of cadmium by sulphur dioxide treated activated carbon [J].Journal of Hazardous Materials, 2003, 103(1): 141-152.
    [16] YIN C Y, AROUA M K, WAN M A W D. Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions [J].Separation & Purification Technology, 2007, 52(3): 403-415.
    [17] 崔文丹. 氮硫掺杂炭气凝胶的制备与电吸附性能 [D]. 北京化工大学, 2017.
    [18] 赵雅静. 电容法与膜电容法脱盐装置性能对比与能耗分析研究 [D]. 天津大学, 2013.
    [19] RUN-XIA L I, ZHAN-YONG L I, DONG P F, et al. Characteristic study on preparation of activated carbon from poplar wood by koh chemical activation [J].Journal of Tianjin University of Science & Technology, 2011.
    [20] KIM B-H, YANG K S, YANG D J. Electrochemical behavior of activated carbon nanofiber-vanadium pentoxide composites for double-layer capacitors [J].Electrochimica Acta, 2013, 109: 859-865.
    [21] DAVYDOV V A, RAKHMANINA A V, AGAFONOV V, et al. Conversion of polycyclic aromatic hydrocarbons to graphite and diamond at high pressures [J].Carbon, 2004, 42(2): 261-269.
    [22] LIU Z, ZENG Y, TANG Q, et al. Potassium vapor assisted preparation of highly graphitized hierarchical porous carbon for high rate performance supercapacitors [J].Journal of Power Sources, 2017, 361: 70-79.
    [23] 王光辉, 梁玉河,TRASS O. 高硫煤与焦炉净煤气共热解脱硫的研究 [J].武汉科技大学学报:自然科学版, 200124(1): 31-33.
    [24] HSU C J, CHIOU H J, CHEN Y H, et al. Mercury adsorption and re-emission inhibition from actual wfgd wastewater using sulfur-containing activated carbon [J]Environ Res, 2018, 168: 319-328.
    [25] ARRIGO R, H VECKER M, WRABETZ S, et al. Tuning the acid/base properties of nanocarbons by functionalisation via amination [J].Journal of the American Chemical Society2010, 132(28): 9616-9630.
    [26] BINIAK S, SZYMAN′SKI G, SIEDLEWSKI J, et al. The characterization of activated carbons with oxygen and nitrogen surface groups [J].Carbon, 1997, 35(12): 1799-1810.
    [27] KUNOWSKY M, MARCO-LOZAR J P, OYA A, et al Hydrogen storage in CO2-activated amorphous nanofibers and their monoliths [J].Carbon, 2011, 50(3): 1407-1416.
    [28] XU X, PAN L, LIU Y, et al. Enhanced capacitive deionization performance of graphene by nitrogen doping [J]J Colloid Interface Sci, 2015, 445: 143-150.
    [29] WANG H, ZHANG D, YAN T, et al. Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization [J].Journal of Materials Chemistry A, 2013, 1(38): 11778-11789.
    [30] LI H, LIANG S, LI J, et al. The capacitive deionization behaviour of a carbon nanotube and reduced graphene oxide composite [J].Journal of Materials Chemistry A, 2013, 1(21):6335-6341.
    [31] WANG H, SHI L, YAN T, et al. Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization [J].Journal of Materials Chemistry A, 2014, 2(13): 4739-4750.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700