电场驱动喷射沉积3D打印
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electric-field-driven jet deposition 3D printing
  • 作者:钱垒 ; 兰红波 ; 赵佳伟 ; 周贺飞 ; 邹淑亭 ; 朱晓阳 ; 李涤尘
  • 英文作者:QIAN Lei;LAN Hong Bo;ZHAO Jia Wei;ZHOU He Fei;ZOU Shu Ting;ZHU Xiao Yang;LI Di Chen;Qingdao Engineering Research Center for 3D Printing, Qingdao University of Technology;State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University;
  • 关键词:电场驱动喷射沉积 ; 3D打印 ; 增材制造 ; 电流体动力学 ; 多材料多尺度 ; 材料喷射
  • 英文关键词:electric-field-driven jet deposition;;3D printing;;additive manufacturing;;EHD;;multi-material and multi-scale;;material jetting
  • 中文刊名:JEXK
  • 英文刊名:Scientia Sinica(Technologica)
  • 机构:青岛理工大学青岛市3D打印工程研究中心;西安交通大学机械制造系统工程国家重点实验室;
  • 出版日期:2018-07-20
  • 出版单位:中国科学:技术科学
  • 年:2018
  • 期:v.48
  • 基金:国家自然科学基金(批准号:51775288);国家自然科学基金“纳米制造的基础研究”重大研究计划(编号:91023023);; 山东省重点研发计划(编号:2018GGX103022)资助项目
  • 语种:中文;
  • 页:JEXK201807007
  • 页数:10
  • CN:07
  • ISSN:11-5844/TH
  • 分类号:77-86
摘要
多材料多尺度3D打印是当前增材制造的前沿方向、研究难点和亟待突破的关键技术,它在组织工程、新材料、新一代电子产品、OLED、印刷电子、软体机器人等诸多领域有着非常广泛的应用,但是现有的增材制造技术在实现多材料跨尺度3D打印面临许多挑战性难题.材料喷射沉积成形技术在实现多材料多尺度3D打印具有非常突出的优势和巨大的潜能,本文提出一种电场驱动喷射沉积3D打印新方法,它突破了现有材料喷射沉积3D打印在打印材料、接收衬底、喷嘴材料、跨尺度制造等方面的一些不足和限制性,尤其是结合多喷头技术,能够实现跨尺度多材料复杂三维结构一体化制造.首先,阐述了该方法的基本原理,并通过理论分析和数值模拟揭示了其成形机理;随后,通过系统的实验研究,验证了电场驱动喷射沉积3D打印对于衬底(或者已打印结构)材质、打印高度和位置、导电和非导电喷嘴、打印材料普适性,以及所提出的两种工作模式在实现跨尺度制造方面的可行性和有效性;最后,通过4个典型打印案例,展示了提出的电场驱动喷射沉积3D打印在实现异质、跨尺度复杂三维结构化制造的能力和突出优势,证明了它在实现多材料多尺度3D打印方面的可行性和有效性.本研究为探索低成本多材料跨尺度3D打印提供了一种全新的解决方案.
        Multi-scale and multi-material 3D printing technique has been considered as a revolutionary technology and next-generation manufacturing tool which can really fulfill the "creating material" and "creating life", especially subvert traditional product design and manufacturing scheme. However, very few of the established additive manufacturing processes have now the capability to fully implement the multi-scale and multi-material fabrication. It is still a significant challenging issue for existing additive manufacturing technologies to implement the multi-material and multi-scale 3D printing for fabricating heterogeneous and hierarchical structured object at full scale ranging from nano to macro-scale. This paper presents a novel 3D printing technique, electric-field-driven jet deposition 3D printing, which offers a promsing and feasible approach to really fulfill multi-scale and multi-material additive manufacturing at low cost. Two new printing schemes, which include pulsed cone-jet mode and continuous cone-jet mode, are proposed herein considering both accuracy and efficiency for multi-scale manufacturing. The experimental results have demonstrated and verified the unique and outstanding advantages of the proposed 3D printing process which involve good universality, and are almost unrestricted in terms of arbitrary substrates(conductive, nonconductive, non-planar, curve, etc.), various solutions and melted materials printed, conductive and non-conductive nozzles, stand-off distance between the nozzle and substrate, and the flexibility to macro/micro fabrication. These four typical cases have shown that the electric-field-driven jet deposition 3D printing provides a promising and effective method to implement the multi-material and multi-scale 3D printing at low cost for fabricating heterogeneous and hierarchical structured object at full scale ranging from micro to macro-scale. As a result, this study offers a novel solution for fulfilling multi-scale and multi-material 3D printing at low cost and good universality as well as high resolution.
引文
1 Wegst U G K,Bai H,Saiz E,et al.Bioinspired structural materials.Nat Mater,2015,14:23–36
    2 Gibson I,Rosen D W,Stucker B.Additive Manufacturing Technologies:Rapid Prototyping to Direct Digital Manufacturing.2nd ed.New York:Springer,2015.1–12
    3 Campbell J,Mc Guinness I,Wirz H,et al.Multimaterial and multiscale three-dimensional bioprinter.J Nanotechnol Eng Med,2015,6:021001
    4 程凯,兰红波,邹淑亭,等.多材料多尺度3D打印主动混合喷头的研究.中国科学:技术科学,2017,47:149–162
    5 史玉升,张李超,白宇,等.3D打印技术的发展及其软件实现.中国科学:信息科学,2015,45:197–203
    6 兰红波,李涤尘,卢秉恒.微纳尺度3D打印.中国科学:技术科学,2015,45:919–940
    7 Mac Donald E,Wicker R.Multiprocess 3D printing for increasing component functionality.Science,2016,353:aaf2093
    8 Ota H,Emaminejad S,Gao Y,et al.Application of 3D printing for smart objects with embedded electronic sensors and systems.Adv Mater Technol,2016,1:1600013
    9 Truby R L,Lewis J A.Printing soft matter in three dimensions.Nature,2016,540:371–378
    10 Bartlett N W,Tolley M T,Overvelde J T B,et al.A 3D-printed,functionally graded soft robot powered by combustion.Science,2015,349:161–165
    11 Wehner M,Truby R L,Fitzgerald D J,et al.An integrated design and fabrication strategy for entirely soft,autonomous robots.Nature,2016,536:451 –455
    12 Lewis J A,Ahn B Y.Three-dimensional printed electronics.Nature,2015,518:42–43
    13 Kong Y L,Tamargo I A,Kim H,et al.3D printed quantum dot light-emitting diodes.Nano Lett,2014,14:7017–7023
    14 Joe Lopes A,Mac Donald E,Wicker R B.Integrating stereolithography and direct print technologies for 3D structural electronics fabrication.Rapid Prototyping J,2012,18:129–143
    15 Huang Y A,Duan Y,Ding Y,et al.Versatile,kinetically controlled,high precision electrohydrodynamic writing of micro/nanofibers.Sci Rep,2014,4:5949
    16 Duan Y Q,Huang Y A,Yin Z P,et al.Non-wrinkled,highly stretchable piezoelectric devices by electrohydrodynamic direct-writing.Nanoscale,2014,6:3289–3295
    17 Huang Y A,Bu N,Duan Y,et al.Electrohydrodynamic direct-writing.Nanoscale,2013,5:12007–12017
    18 Zhang B,He J,Li X,et al.Micro/nanoscale electrohydrodynamic printing:From 2D to 3D.Nanoscale,2016,8:15376–15388
    19 He J,Xia P,Li D.Development of melt electrohydrodynamic 3D printing for complex microscale poly(ε-caprolactone)scaffolds.Biofabrication,2016,8:035008
    20 Qu X,Xia P,He J,et al.Microscale electrohydrodynamic printing of biomimetic PCL/n HA composite scaffolds for bone tissue engineering.Mater Lett,2016,185:554–557
    21 Han Y,Wei C,Dong J.Super-resolution electrohydrodynamic(EHD)3D printing of micro-structures using phase-change inks.Manuf Lett,2014,2 :96–99
    22 Park J U,Hardy M,Kang S J,et al.High-resolution electrohydrodynamic jet printing.Nat Mater,2007,6:782–789
    23 Onses M S,Sutanto E,Ferreira P M,et al.Mechanisms,capabilities,and applications of high-resolution electrohydrodynamic jet printing.Small,2015,11:4237–4266

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700