复合式离心泵汽蚀特性的数值模拟与试验分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation and experimental analysis for cavitation in composite centrifugal pump
  • 作者:晁文雄 ; 王均儒 ; 王飞 ; 臧华兵 ; 史宝鲁
  • 英文作者:CHAO Wenxiong;WANG Junru;WANG Fei;ZANG Huabing;SHI Baolu;AECC Xi'an Engine Control Co.,Ltd.;Fudan University;China Astronaut Research and Training Center;
  • 关键词:复合式离心泵 ; 汽蚀特性 ; 乙二醇水溶液 ; 数值模拟 ; 特性试验
  • 英文关键词:centrifugal pump;;cavitation;;ethylene glycol-water solution;;numerical simulation;;characteristics test
  • 中文刊名:ZGKJ
  • 英文刊名:Chinese Space Science and Technology
  • 机构:中国航发西安动力控制科技有限公司;复旦大学;中国航天员中心;
  • 出版日期:2019-04-30 10:50
  • 出版单位:中国空间科学技术
  • 年:2019
  • 期:v.39;No.232
  • 基金:国家自然科学基金(11472083);; 中国航空发动机集团自主创新专项资金项目(ZZCX-2017-048)
  • 语种:中文;
  • 页:ZGKJ201903009
  • 页数:7
  • CN:03
  • ISSN:11-1859/V
  • 分类号:67-73
摘要
为研究某型航天离心泵汽蚀特性,基于Mixture多相流模型与汽蚀模型相结合对长短复合叶轮离心泵内乙二醇水溶液进行不同的进口负压下汽液两相定常数值模拟并进行不同进口压力下的汽蚀性能特性试验,结果表明汽化区域随进口负压的增大而扩大。当进口负压在-50 kPa,泵进出口压差在155 kPa,已经接近额定压差的3%限制范围,此时离心泵的出口压力105 kPa为临界汽蚀出口压力;进口负压到-60 kPa时,出口流量突变为300 L/h,该泵产生临界汽蚀状态,小于技术要求的最小进口压力10 kPa,因此该泵在其工作范围内不会发生汽蚀现象,并证得本文数值模拟的可靠性。
        In order to study the cavitation of certain type of aerospace centrifugal pump, the multiphase model on the basis of Mixture was used together with cavitation model.The steady constant value of vapor-liquid phases was simulated under the condition of different negative pressures at inlet of water glycol inside the centrifugal pump with long and short composite impellers, and the cavitation test was conducted with different inlet pressures. The results indicate that the vaporization area expands along with the increase of negative pressure. In case the negative pressure at inlet is-50 kPa and the pressure difference at pump inlet and outlet is 155 kPa,already approaching the 3% allowance of rated pressure difference, the pressure at outlet of centrifugal pump is 105 kPa which is the critical cavitation pressure at outlet. In case the negative pressure at inlet is-60 kPa, the flow rate at outlet suddenly changes to 300 L/h, the critical cavitation state occurs to the pump, and the inlet pressure is less than 10 kPa that is the minimum pressure required in technical specification. Therefore, cavitation will not occur when the pump operates at its working range, and reliability of the value simulation in this paper is also verified.
引文
[1] 关醒凡.现代泵技术手册[M].北京:宇航出版社,1995.GUAN X F.Modern pumps technical manuals[M].Beijing:Astronautic Publishing House,1995(in Chinese).
    [2] 王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004.WANG F J.Computational fluid dynamics analysis—CFD software principle and application[M].Beijing:Tsinghua University Press,2004(in Chinese).
    [3] 刘宜,张文军,杜杰.离心泵内部空化流动的数值预测[J].排灌机械,2008,3(26):19-22.LIU Y,ZHANG W J,DU J.Numerical prediction of cavitation flow in centrifugal pump[J].Drainage and Irrigation Machinery,2008,3(26):19-22(in Chinese).
    [4] 李军,刘立军,李国君.基于汽相/液相界面跟踪方法的弯管内空化流动的数值预测[J].工程热物理学报,2008,12(29):2037-2040.LI J,LIU L J,LI G J.Numerical prediction of cavitation flow in bend pipes using vapor/liquid interface tracking method[J].Journal of Engineering Thermophysics,2008,12(29):2037-2040(in Chinese).
    [5] 王彬,于定鹏,叶志峰,等.径向直叶片燃油汽心泵汽心形态数值模拟[J].航空动力学报,2015(11):2730-2737.WANG B,YU D P,YE Z F,et al.Numerical simulation on fuel vapor core configuration in fuel vapor core pump with radial straight blades[J].Journal of Engineering Thermophysics,2015(11):2730-2737(in Chinese).
    [6] 肖虹,高超,党云卿,等.FLUENT软件的二次开发及其在火箭气动计算中应用[J].航空计算技术,2009,39(5):55-57.XIAO H,GAO C,DANG Y Q,et al.FLUENT and application in numerical simulation of aerodynamic characteristics for rockets[J].Aeronautical Computing Technique,2009,39(5):55-57(in Chinese).
    [7] 刘高同,孙宇,张磊.火星大气环境模拟装置设计及仿真分析研究[J].中国空间科学技术,2016,35(5):65-71.LIU G T,SUN Y,ZHANG L.Analysis of design simulation calcution module for martian atmosphere environment simulation device[J].Chinese Space Science and Technology,2016,35(5):65-71(in Chinese).
    [8] 朱荣生,付强.低比转数离心泵叶轮内汽蚀两相流三维数值模拟[J].农业机械学报,2006,37(5):75-79.ZHU R S,FU Q.Numerical simulation of 3D two-phase cavitation flow in impeller of the low specific speed centrifugal pump[J].Transactions of the Chinese Society of Agricultural Machinery,2006,37(5):75-79(in Chinese).
    [9] 崔宝玲,方晨,葛明亚.低比转数离心泵内部流动特性和外特性试验[J].排灌机械工程学报,2016,34(5):375-380.CUI B L,FANG C,GE M Y.Internal flow characteristics and performance test of low specific speed centrifugal pumps[J].Journal of Drainage and Irrigation Machinery Engineering,2016,34(5):375-380(in Chinese).
    [10] 刘凯,杜润,柯坚.气蚀CFD评价方法[J].液压气动与密封,2011(5):32-36.LIU K,DU R,KE J.Evaluation method of cavitation erosion with CFD[J].Hydraulics Pneumation&Seals,2011(5):32-36(in Chinese).
    [11] 周志成,李峰,黄华,等.卫星氢镍蓄电池电解液在轨回流特性仿真[J].中国空间科学技术,2015,35(3):44-49.ZHOU Z C,LI F,HUANG H,et al.Numerical simulation of electrolyte moving in Nickel-Hydrogen battery of satellite[J].Chinese Space Science and Technology,2015,35(3):44-49(in Chinese).
    [12] 胡良波,周邵萍,张浩.湍流模型对多级离心泵性能预测的适用性[J].流体机械,2014,42(10):26-31.HU L B,ZHOU S P,ZHANG H.Applicability of turbulence simulation methods for performance prediction of a multistage centrifugal pump[J].Fluid Machinery,2014,42(10):26-31(in Chinese).
    [13] 黄思,管俊.基于空化模型的多级离心泵汽蚀性能分析[J].流体机械,2011,39(1):29-32.HUANG S,GUAN J.Analysis on cavitation performance in multi-stage centrifugal pump based on cavitation model[J].Fluid Machinery,2011,39(1):29-32(in Chinese).
    [14] 张剑慈,崔宝玲.开式离心叶轮内部流道的数值模拟[J].机械工程学报,2006,42(4):37-41.ZHANG J C,CUI B L,et al.Numerical value simulation of inner flown channel of the open centrifugal impeller[J].Chinese Journal of Mechanical Engineering,2006,42(4):37-41 (in Chinese).
    [15] 杨孙圣,孔繁余,周水清.离心泵气蚀性能的数值计算和分析[J].华中科技大学学报,2010,38(10):93-95.YANG S S,KONG F Y,ZHOU S Q.Numerical simulation and analysis of centrifugal pump cavitation[J].Journal of Hua Zhong University of Science and Technology,2010,38(10):93-95(in Chinese).
    [16] 王勇,刘厚林,袁寿其,等.离心泵内部空化特性的CFD模拟[J].排灌机械工程学报,2011,29(2):99-103.WANG Y,LIU H L,YUAN S Q,et al.CFD simulation on cavitation characteristics in centrifugal pump[J].Journalof Drainage and Irrigation Machinery Engineering,2011,29(2):99-103(in Chinese).
    [17] 黄家荣,范宇峰,范含林.载人运输飞船流体回路试验研究[J].中国空间科学技术,2010,30(1):65-71.HUANG J R,FAN Y F,FAN H L.Experiment study of fluid loop system on manned spaceship [J].Chinese Space Science and Technology,2010,30(1):65-71(in Chinese).
    [18] 马丽萍,袁怒安,张璟,等.天宫一号目标飞行器氢镍蓄电池内部温度场仿真分与验证[J].上海航天,2011,28(5):29-34.MA L P,YUAN N A,ZHANG J,et al.Simulation analysis and testing on inner temperature difference of Nickel-Hydrogen cell used in Tiangong-1 target spacecraft [J].Aerospace Shanghai,2011,28(5):29-34(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700