用户名: 密码: 验证码:
真空电子器件的新机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Some New Ideas for Vacuum Electron Devices
  • 作者:廖复疆
  • 英文作者:LIAO Fu-jiang;Beijing Vacuum Electronics Research Institute;
  • 关键词:毫米波 ; 太赫兹波 ; 真空电子 ; 光子带隙 ; 行波管 ; 纳米真空三极管
  • 英文关键词:Millimeter wave;;THz wave;;Vacuum electronics;;Photonic band gap;;TWT;;Nano-vacuum triode
  • 中文刊名:ZKDJ
  • 英文刊名:Vacuum Electronics
  • 机构:北京真空电子技术研究所;
  • 出版日期:2017-10-25
  • 出版单位:真空电子技术
  • 年:2017
  • 期:No.330
  • 语种:中文;
  • 页:ZKDJ201705001
  • 页数:9
  • CN:05
  • ISSN:11-2485/TN
  • 分类号:7-14+56
摘要
本文对近年来真空电子器件研究中出现的一些新概念、新设想进行了介绍和评述。随着毫米波(mmW)和太赫兹(THz)频域的进一步开拓,对工作在这些频域真空电子器件的频率、功率、带宽、效率和微制造提出了更高的要求。带状电子注和多电子注是提高器件功率的重要途径;光子带隙技术和真空电子器件的结合为新型器件的发展提供了新的方法;陶瓷行波管的研制给我们带来全新的概念,特别是纳米真空三极管和光三极管概念的提出,为真空电子器件回归数字电路技术展示出令人鼓舞的前景。
        Some new ideas for vacuum electron devices are introduced and commented in this paper.As millimeter wave(mmW)and terahertz(THz)technique developing,the requirements for vacuum electron devices such as high frequency,high power output,wide bandwidth,high efficiency and micro-fabrication are increased.The sheet beam and multi-beam array are important ways to increase the device power output;the photonic band gap(PBG)combined with vacuum electronics will provide an approach to new device;ceramic structure TWT is a new concept for vacuum electron device;especially the metal-oxide-semiconductor field-effect transistor with a vacuum channel and vacuum electron-based photodiode concept proposals hopefully may bring vacuum electronics returning to numerical electronics.
引文
[1]Rangan S,Rappaport T S,Erkip E.Millimeter-WaveCellular Wireless Networks:Potentials and Challenges[J].PIEEE,2014,102(3):366-385.
    [2]Sulyman A L,Nassar A T,Samimi M K,et al.Millimeter-Wave Communbication for 5G,Radio Propagation Path Loss Models for 5G Celluar Network in 28GHz and 38Ghz Millimeter Wave Bands[C].IEEE Communication Magazine,2014:78-86.
    [3]Cianca E,Rossi T,Yahalon A,et al.EHF for Satellite Communications:The New Broadband Frontier[J].PIEEE,2011,99(11):1858-1881.
    [4]Claudio Paoloni,Rosa Letizia,Frederic Andre,et al.Wband TWT for New Generation High Capacity Wireless Networks[C].IEEE IVEC2016Proceedings,2016:521-522.
    [5]Wallace H B.Revisiting the World above 100GHz.What has Changed in 6Years[C].IEEE IVEC2014Proceedings,2014:5.
    [6]Booske J H,Pobbs R J,Joye C D,et al.Vacuum Electronics High Power Terahertz Sources[J].IEEE Trans.on Terahertz Science and Technology,2011,1(1):54-76.
    [7]James B G,Kolda P.A ladder Circuit Coupled Cavity TWT at 80-100 GHz[J].Proc Int Electron Devices Meeting,1986,32:494-497.
    [8]Theiss A J,Meadows C J,Freeman R,et al.High-Average-Power W-Band TWT Development[J].IEEE Trans.on Plasma Science,2010,38(6):1239-1243.
    [9]Kowalczyk R,Zubyk A,Meadowa C,et al.High Efficiency E-Band MPM for Communication Applications[C].IEEE IVEC2016Proceedings,2016:513-514.
    [10]Joye C,Cook A,Calame J,et al.Demonstration of a High Power,Wideband 220-GHz Traveling Wave Amplifier Fabricated by UV-LIGA[J].IEEE Trans on ED,2014,61(6):1672-1678.
    [11]Joye C,Cook A,Calame J,et al.Micro-fabricated233GHz Traveling Wave Amplifier[C].IEEE IVEC2016Proceedings,2016:117-178.
    [12]Feng Jinjun,Cai Jun,Hu Yinfy,et al.Development of W-Band Folded Waveguide Pulsed TWT[J].IEEE Trans on ED,2014,61(6):1721-1725.
    [13]Kowalski E J,Shapiro M A,Temkin R J.An Overmode W-Band Coupled-Cavity TWT[J].IEEE Trans on ED,2015,62(5):1609-1615.
    [14]Rosenzweig G,Hummelt J S,Shapiro M A,et al.Designs of W-Band TWT Amplifiers With Large Beam Tunnels[C].IEEE IVEC2016Proceedings,2016:517-518.
    [15]Letizia R,Mineo M,Paolonilet C.Photonics Band Gap Corrugated Slow Wave Structure for THz Sheet Beam Vacuum Electron Devices[C].IEEE IVEC2016 Proceedings,2016:39-40.
    [16]Smirnova E I,Carlsten B E,Earley L M.Progress on Fabrication and Test of the Omniguide Traveling Wave Tube Structures[C].IEEE IVEC2008 Proceedings,2008:85-86.
    [17]Smirnova E I,Carlsten B E,Fierro F,et al.Fabrication of Ceramic Structures for MM-Wave TWTs[C].IEEE IVEC2016Proceedings,2016:405-406.
    [18]Pasoue J,Wright E,Nguyen K T,et al.Demonstration of a Multikilowatt,Solenoidally Focused Sheet Beam Amplifier at 94 GHz[J].IEEE Trans on ED,2014,61(6):1630-1636.
    [19]Basten M A,Tucek J C,Gallagher D A,et al.233GHz High Power Amplifier Development at Northrop Grumman[C].IEEE IVEC2016 Proceedings,2016:43-44.
    [20]Field M,Griffith Z,Young A,et al.Development of q220GHz 50 W Sheet Beam Traveling Wave Tube Amplifier[C].IEEE IVEC2014 Proceedings,2014:225-226.
    [21]Bastten M,Tucek J,Gallaher D,et al.A Multiple Electron Beam Array for a 220GHz Amplifier[C].IEEE IVEC2009Proceedings,2009:110-111.
    [22]Borsuk G M,Levush B.Vacuum Electronics Research Perspective at the Naval Research Laboratory[C].IEEE IVEC2010Proceedings,2010:3-4.
    [23]Pershing D E,Nguyen K T,Abe D K,et al.Demonstration of a Wideband 10 kW Ka-Band Sheet Beam TWT Amplifier[J].IEEE Trans on ED,2014,61(6):1637-1642.
    [24]Nguyen K T,Pasour J A,Antonsen T M,et al.Intense Sheet Electron Beam Transport in a Uniform Solenoidal Magnetic Field[J].IEEE Trans on ED,2009,56(5):744-751.
    [25]Ruan Cunjun,Wang Shuzhong,Han Ying,et al.Theoretical and Experimental Investigation on Intense Sheet Beam Transport With Its Diocotron Instability in a Uniform Magnetic Field[J].IEEE Trans on ED,2014,61(6):1643-1650.
    [26]Booske J H,McVey B R,Antonsen T M,et al.Stability and Confinement of Nonrelativistic Sheet Electron Beams with Periodic Cusped Magnetic Focusing[J].J A P,1992,73(9):4140-4155.
    [27]Burke A,Besong V,Granlund K,et al.W-band Sheet Beam Klystron PCM Focusing Design[J].IEEE IVEC2006Proceedings,2006:485.
    [28]Pasoue J,Nguyen K,Wright E,et al.Demonstration of a 100kW Solenoidally Focused Sheet Electron Beam for Millimeter-Wave Amplifiers[J].IEEE Trans on ED,2011,58(6):1792-1797.
    [29]Letizia R,Mineo M,Paoloni C.Photonic CrystalStructures for THz Vacuum Electron Devices[J].IEEE Trans on ED,2015,62(1):179-183.
    [30]Letizia R,Mineo M,Paoloni C,et al.THz Backward Wave Oscillator based on PhC-wall Corrugated Waveguide[C].IEEE IVEC2014 Proceedings,2014:65-66.
    [31]Shchegolkov D Y,Haynes W B,Renneke R M,et al.Millimeter-Wave Gain Experiments with a Wide-Band Omniguide Traveling-Wave Tube[C].IEEE IVEC2012Proceedings,2012:297-298.
    [32]Nichols K,Carlsten B E,Simakov E I,et al.The Effect of Fabrication Tolerance od the Performance of Ceramic Structures for Novel MM-Wave Slow-Wave Structure[C].IEEE IVEC2016Proceedings,2016:175-176.
    [34]Srisonphan S,Jung Yun Suk,Kim Hong Koo.MetalOxide-Semiconductor Field-Effect Transistor with a Vacuum Channel[J].Nature Nanotechnology,2012,7:504-508.
    [35]Han Jin-Woo,Oh Jae Sub,Meyyappan M.Vacuum nano-electronics:Back to the Future?[J].Appl Phys Lett,2012,100:213505.
    [36]Srisonphan S,Teerakawanich N.Vacuum ElectroBased Photodiode[C].IEEE IVEC2016Proceedings,2016:47-48.
    [37]Stoner B R,Glass J T.Nothing is like a Vacuum[C].Nature Nanotechnology,2012:485-486.
    [38]Barker R J.US DoD Commitment to Basic Research in Vacuum Electronics[C].IVEC2000,2000.
    [39]DARPA.High Frequency Integrated Vacuum Electronics(HiFIVE)[C].SOL BAA 07-49,POC Mark Rosker,DARPA/MTO,2007.
    [40]DARPA.THz Electronics(THz)[C].SOL BAA 08-54,POC Mark Rosker,DARPA/MTO,2008.
    [41]Palmer W D.THz Vacuum Electronics[C].IEEE IVEC2012Proceedings,2012:17-19.
    [42]Rosker M J,Wallace H B.Vacuum Electronics and the World Above 100GHz[C].IEEE IVEC2008Proceedings,2008:5-6.
    [43]Microsystem Technology Office.DARPA-BAA-15-40,Innovative Vacuum Electronics science and Technology(INV EST)[A],2015.
    [44]Microsystem Technology Office.DARPA-BAA-15-50,High power Amplifier using Vacuum Electronics for Overmatch Capability(HAVOC)[A],2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700