北山花岗岩与放射性铯相互作用的微观机制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Interaction mechanism of radioactive cesium on Beishan granite
  • 作者:吴涵玉 ; 赵晓岚 ; 王威 ; 何碧红 ; 耿榕悦 ; 范桥辉
  • 英文作者:Hanyu Wu;Xiaolan Zhao;Wei Wang;Bihong He;Rongyue Geng;Qiaohui Fan;Key Laboratory of Petroleum Resource, Gansu Province, Northwest Institute of Ecology and Environmental Resources, Chinese Academy of Sciences;
  • 关键词:北山花岗岩 ; 放射性铯 ; 吸附 ; EXAFS ; GAM模型
  • 英文关键词:Beishan granite;;radioactive cesium(RCs);;adsorption;;EXAFS;;GAM
  • 中文刊名:JBXK
  • 英文刊名:Scientia Sinica(Chimica)
  • 机构:中国科学院西北生态环境资源研究院甘肃省油气资源研究重点实验室;
  • 出版日期:2018-11-02 09:20
  • 出版单位:中国科学:化学
  • 年:2019
  • 期:v.49
  • 基金:国家自然科学基金(编号:4153128,21601179);; 中国科学院“百人计划”、中国科学院兰州油气资源研究中心“十三五”科技创新基金(编号:135CCJJ20160515);; 甘肃省自然科学基金(编号:17JR5RA309);; 甘肃省重点实验室专项(编号:1309RTSA041)资助项目
  • 语种:中文;
  • 页:JBXK201901017
  • 页数:10
  • CN:01
  • ISSN:11-5838/O6
  • 分类号:175-184
摘要
作为铀核裂变过程中重要的裂变产物,放射性铯(radiocesium, RCs)是高放废物地质处置中重点关注的核素之一.北山花岗岩与RCs相互作用的微观机制研究对于我国高放废物深地质处置库的性能和安全评价至关重要.本文结合批式实验、电子探针显微分析(EPMA)、同步辐射扩展边X射线吸收精细结构(EXAFS)和微区X射线荧光(μ-XRF)光谱技术,系统研究了不同环境条件下北山花岗岩与Cs(Ⅰ)相互作用的微观机制. EPMA和μ-XRF表明黑云母和长石类矿物是控制北山花岗岩阻滞RCs迁移的主控矿物. EXAFS光谱证明了Cs(Ⅰ)在北山花岗岩和长石类矿物表面的吸附以外层络合作用为主,且在黑云母表面上的内层络合作用较前者显著增大.尽管长石类矿物对Cs(Ⅰ)的固定能力弱于黑云母,但北山花岗岩中长石类矿物的含量较高(约占70%),因此其对Cs(Ⅰ)在北山花岗岩表面吸附的影响亦不可忽视. GAM (general adsorption model)模型能够定量地描述和预测Cs(Ⅰ)在北山花岗岩上的吸附-解吸行为,具有较高盐度的地下水可在一定程度上抑制北山花岗岩对Cs(Ⅰ)的吸附作用;但北山花岗岩上的楔形位点(FES)仍能有效固定痕量RCs,且受北山地下水的盐度和组成离子影响较小.
        As an important fission product in the uranium nuclear fission, radioactive cesium(RCs) is one of the key nuclides in the high-level radioactive waste(HLW) disposal. The microscopic mechanism of interaction between Beishan granite and RCs is very essential for the performance and safety evaluation of the HLW disposal. In this article,batch experiments, electron probe microanalysis(EPMA), X-ray absorption fine structure spectroscopy(EXAFS) and micro-X-ray fluorescence(μ-XRF) spectroscopy had been used in studying the interaction between Beishan granite and RCs under different conditions. EPMA and μ-XRF confirmed that biotite and albite/microcline were controlling the retardation of RCs in Beishan granite. EXAFS analysis showed that CsⅠ adsorbed on Beishan granite and albite/microcline mainly as the formation of outer-sphere complexes, while more inner-sphere complexes when adsorbed on biotite. Since the high content of albite/microcline(about 70%) in Beishan granite, the sorption of CsⅠ on albite/microcline cannot be negligible. The general adsorption mode(GAM) for Cs adsorption can quantitatively describe and predict the adsorption-desorption behaviors of CsⅠ on Beishan granite. Groundwater with higher salinity could inhibit the fixation of CsⅠ on Beishan granite to some extent. However, the frayed edge sites on Beishan granite were still effective to trace RCs, and less affected by Beishan groundwater.
引文
1 Zhao XG,Wang J,Cai M,Ma LK,Zong ZH,Wang XY,Su R,Chen WM,Zhao HG,Chen QC,An QM,Qin XH,Ou MY,Zhao JS.Eng Geol,2013,163:26-40
    2 Jin Q,Wang G,Ge M,Chen Z,Wu W,Guo Z.Appl Geochem,2014,47:17-24
    3 Tan X,Ren X,Chen C,Wang X.Trends Anal Chem,2014,61:107-132
    4 Chang HS,Um W,Rod K,Serne RJ,Thompson A,Perdrial N,Steefel CI,Chorover J.Environ Sci Technol,2011,45:8313-8320
    5 Siegel MD,Bryan CR.Treat Geochem,2003,9:205-262
    6 Li J,Chen C,Zhang R,Wang X.Sci China Chem,2015,59:150-158
    7 Chen H,Huang S,Zhang Z,Liu Y,Wang X.Acta Chim Sin,2017,75:560(in Chinese)[陈海军,黄舒怡,张志宾,刘云海,王祥科.化学学报,2017,75:560-574]
    8 Pang H,Wang X,Yao W,Yu S,Wang X.Sci Sin-Chim,2018,48:58-73(in Chinese)[庞宏伟,王祥学,姚文,于淑君,王祥科.中国科学:化学,2018,48:58-73]
    9 Yu S,Wang X,Pang H,Zhang R,Song W,Fu D,Hayat T,Wang X.Chem Eng J,2018,333:343-360
    10 Yang S,Wang X,Chen Z,Li Q,Wei B.Wang X.Prog Chem,2018,30:225-242(in Chinese)[杨姗也,王祥学,陈中山,李倩,韦犇犇,王祥科.化学进展,2018,30:225-242]
    11 Zhang Z,Dong Z,Wang X,Ying D,Niu F,Cao X,Wang Y,Hua R,Liu Y,Wang X.Chem Eng J,2018,341:208-217
    12 Fan QH,Tanaka M,Tanaka K,Sakaguchi A,Takahashi Y.Geochim Cosmochim Acta,2014,135:49-65
    13 Fan Q,Tanaka K,Sakaguchi A,Kondo H,Watanabe N,Takahashi Y.Appl Geochem,2014,48:93-103
    14 Fan Q,Yamaguchi N,Tanaka M,Tsukada H,Takahashi Y.J Environ Radioact,2014,138:92-100
    15 Takahashi Y,Fan Q,Suga H,Tanaka K,Sakaguchi A,Takeichi Y,Ono K,Mase K,Kato K,Kanivets VV.Sci Rep,2017,7:12407
    16 Poinssot C,Baeyens B,Bradbury MH.Geochim Cosmochim Acta,1999,63:3217-3227
    17 Bradbury MH,Baeyens B.J Contam Hydrol,2000,42:141-163
    18 Fan Q,Takahashi Y.Appl Geochem,2017,79:75-84
    19 Cornell RM.J Radioanal Nucl Chem Articles,1993,171:483-500
    20 Zhang C,Liu Y,Li X,Chen H,Wen T,Jiang Z,Ai Y,Sun Y,Hayat T,Wang X.Chem Eng J,2018,346:406-415
    21 Zhao X,Qiang S,Wu H,Yang Y,Shao D,Fang L,Liang J,Li P,Fan Q.Sci Rep,2017,7:8495
    22 Bostick BC,Vairavamurthy MA,Karthikeyan KG,Chorover J.Environ Sci Technol,2002,36:2670-2676
    23 Qin H,Yokoyama Y,Fan Q,Iwatani H,Tanaka K,Sakaguchi A,Kanai Y,Zhu J,Onda Y,Takahashi Y.Geochem J,2012,46:297-302
    24 Li J,Wang X,Zhao G,Chen C,Chai Z,Alsaedi A,Hayat T,Wang X.Chem Soc Rev,2018,47:2322-2356
    25 Fan QH,Tan XL,Li JX,Wang XK,Wu WS,Montavon G.Environ Sci Technol,2009,43:5776-5782
    26 Cho Y,Komarneni S.Appl Clay Sci,2009,44:15-20
    27 Motokawa R,Endo H,Yokoyama S,Ogawa H,Kobayashi T,Suzuki S,Yaita T.Langmuir,2014,30:15127-15134
    28 Ilton ES,Veblen DR,Moses CO,Raeburn SP.Geochim Cosmochim Acta,1997,61:3543-3563
    29 Brookshaw DR,Lloyd JR,Vaughan DJ,Pattrick RAD.Geomicrobiol J,2016,33:206-215
    30 McKinley JP,Zachara JM,Heald SM,Dohnalkova A,Newville MG,Sutton SR.Environ Sci Technol,2004,38:1017-1023
    31 Yin X,Zhang L,Ochiai A,Utsunomiya S,Takahashi H,Ohnuki T,Takeshita K.Chem Lett,2017,46:1350-1352
    32 Tsai SC,Juang KW,Jan YL.J Radioanal Nucl Chem,2005,266:101-105
    33 Tsukamoto M,Ohe T.Chem Geol,1993,107:29-46
    34 Sasaki T,Terakado Y,Kobayashi T,Takagi I,Moriyama H.J Nucl Sci Tech,2007,44:641-648
    35 Xu X,Kalinichev AG,James Kirkpatrick R.Geochim Cosmochim Acta,2006,70:4319-4331
    36 Kim Y,James Kirkpatrick R.Geochim Cosmochim Acta,1997,61:5199-5208
    37 Durrant CB,Begg JD,Kersting AB,Zavarin M.Sci Total Environ,2018,610-611:511-520
    38 Murota K,Saito T,Tanaka S.J Environ Radioact,2016,153:134-140
    39 Kemner KM,Elam WT,Hunter DB,Bertsch PM.Phys B-Condensed Matter,1995,208-209:735-736
    40 Kikuchi R,Mukai H,Kuramata C,Kogure T.J Mineral Petrol Sci,2015,110:126-134
    41 Tsai SC,Wang TH,Li MH,Wei YY,Teng SP.J Hazard Mater,2009,161:854-861
    42 Rigol A,Vidal M,Rauret G,Shand CA,Cheshire MV.Environ Sci Technol,1998,32:663-669
    43 Yin X,Takahashi H,Inaba Y,Takeshita K.Chem Lett,2016,45:256-258
    44 Mukai H,Hirose A,Motai S,Kikuchi R,Tanoi K,Nakanishi TM,Yaita T,Kogure T.Sci Rep,2016,6:21543
    45 Brouwer E,Baeyens B,Maes A,Cremers A.J Phys Chem,1983,87:1213-1219
    46 Wallace SH,Shaw S,Morris K,Small JS,Fuller AJ,Burke IT.Appl Geochem,2012,27:1482-1491
    47 Bortun AI,Bortun LN,Clearfield A.Solvent Extraction Ion Exchange,1997,15:909-929
    48 de Koning A,Comans RNJ.Geochim Cosmochim Acta,2004,68:2815-2823
    49 Bradbury MH,Baeyens B.Geochim Cosmochim Acta,1998,62:783-795
    50 Gaines GL Jr.,Thomas HC.J Chem Phys,1953,21:714-718

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700