微观尺度下晶粒尺寸和冷却速率对多晶NiTi合金相变温度的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microscopic investigation to influence of grain size and cooling rate on phase transformation temperature for polycrystalline NiTi alloy
  • 作者:丁军 ; 赵昊男 ; 黄霞 ; 曾祥国 ; 王路生 ; 宋鹍
  • 英文作者:DING Jun;ZHAO Hao-nan;HUANG Xia;ZENG Xiang-guo;WANG Lu-sheng;SONG Kun;College of Mechanical Engineering, Chongqing University of Technology;School of Architecture and Environment, Sichuan University;
  • 关键词:形状记忆合金 ; 相变温度 ; 冷却速率 ; 分子动力学
  • 英文关键词:shape memory alloy;;phase transformation temperature;;cooling rate;;molecular dynamics
  • 中文刊名:ZYXZ
  • 英文刊名:The Chinese Journal of Nonferrous Metals
  • 机构:重庆理工大学机械工程学院;四川大学建筑与环境学院;
  • 出版日期:2019-03-15
  • 出版单位:中国有色金属学报
  • 年:2019
  • 期:v.29;No.240
  • 基金:国家自然科学基金委员会与中国工程物理研究院联合基金资助项目(U1530140);; 重庆市基础与前沿研究计划资助项目(CSTC2016JCYJA0517,CSTC2017JCYJAX0357);; 重庆市教育委员会科学技术研究资助项目(KJ1709224)~~
  • 语种:中文;
  • 页:ZYXZ201903016
  • 页数:10
  • CN:03
  • ISSN:43-1238/TG
  • 分类号:147-156
摘要
采用分子动力学方法研究了微观尺度下晶粒尺寸和冷却速率对NiTi合金相变温度的影响和相变微观机理。结果表明:当冷却速率为-5 K/ps,晶粒尺寸从17.5 nm减小到8.1 nm时,马氏体相变起始温度从230 K下降到80 K,马氏体相变形核点的数目逐渐减少且主要出现在晶粒内部,降温过程中马氏体相成核后向晶界处扩散生长,当晶粒尺寸减小至4.1 nm时,马氏体相变效应则受到抑制;而升温过程中,奥氏体相变形核点主要出现在晶界处,且随着温度的升高,形核点主要向晶粒内部聚集生长。当冷却速率从-5 K/ps增加到-15 K/ps,晶粒尺寸为17.5 nm的模型中马氏体相变结束温度从190 K减小到20 K。随着冷却速率的增加,马氏体晶粒细化程度相应增加,相变滞后宽度(Mf-Af)随着冷却速率的增加相应增大,但是冷却速率对马氏体相变生长机制影响相对较小。
        The molecular dynamic simulation was conducted to analyze the influence of grain size and cooling rate to the phase transformation temperature, and the phase transformation mechanism for the alloy was also studied. The result shows that when the cooling rate is-5 K/ps, as the grain size decreases from 17.5 nm to 8.5 nm, the martensite formation temperature decrease from 230 K to 80 K, the number of nucleation point also decreases gradually and only nucleate inside the grain, the martensite grows towards the grain boundary in the process of cooling. When the grain size decreases to 4.1 nm, the transformation is suppressed. In the process of heating, the nucleation point of austenits nucleates near the grain boundary and grows towards inside of the grain. When the cooling rate increases from-5 K/ps to-15 K/ps, the finish transformation temperature of martensite decreases from 190 K to 20 K, the grain refinement increases and the transformation hysteresis width(Af-Mf) decreases with the increase in cooling rate in the model of 17.5 nm. While the effect of cooling rate on martensitic phase growth mechanism is relatively small.
引文
[1]MAY H,ZHANG Q C,ZHANG D Y,SCARPA F,LIU B.The mechanics of shape memory alloy metal rubber[J].Acta Mater,2015,96:89-100.
    [2]ZOTOV N,PFUND M,POLATIDISA E,MARK A F,MITTEMEIJER E J.Change of transformation mechanism during pseudoelastic cycling of NiTi shape memory alloys[J].Materials Science&Engineering A,2017,682:178-191.
    [3]PAN G J,CRISTINA B,LUCA M,SPRIANO S.Microstructure and transformation temperatures in rapid solidified Ni-Ti alloys.Part I:The effect of cooling rate[J].Journal of Alloys and Compounds,2014,589:628-632.
    [4]鲁军,李侠,王重马,于庆洋,高琳,吴立天.基于小波分析的MSMA振动传感器信号处理与故障检测[J].电工技术学报,2015,30(10):354-360.LU Jun,LI Xia,WANG Chong-ma,YU Qing-yang,GAOLin,WU Li-tian.Signal process and fault detection of MSMA vibration sensor based on wavelet analysis[J].Transactions of China Electrotechnical Society,2015,30(10):354-360.
    [5]WANG X,KUSTOV S,LI K,SCHRYVERS D,VERLINDEN B,HUMBEECK J V.Effect of nanoprecipitates on the transformation behavior and functional properties of a Ti-50.8at.%Ni alloy with micron-sized grains[J].Acta Materialia,2015,82:224-233.
    [6]SHI X B,MA Z Y,ZHANG J S,DING H L,GUO F M.Grain size effect on the martensitic transformation temperatures of nanocrystalline NiTi alloy[J].Smart Materials and Structures,2015,24(7):1-5.
    [7]SHI X B,CUI L S,JIANG D Q,YU C,GUO F M,YU M Y,REN Y,LIU Y N.Grain size effect on the R-phase transformation of nanocrystalline NiTi shape memory alloys[J].J Mater Sci,2014,49:4643-4647.
    [8]AHADI A,SUN Q P.Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi[J].Acta Materialia,2014,76:186-197.
    [9]AHADI A,SUN Q P.Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction[J].Acta Materialia,2015,90:272-281.
    [10]MOTEMANI Y,NILI-AHMADABAD M,TAN M J,BORNAPOUR M,RAYAGAN S.Effect of cooling rate on the phase transformation behavior and mechanical properties of Ni-rich NiTi shape memory alloy[J].Journal of Alloys and Compounds,2009,469(1/2):164-168.
    [11]FANG H,WONG M B,BAI Y,LUO R.Effect of heating/cooling rates on the material properties of NiTi wires for civil structural applications[J].Construction and Building Materials,2015,101(1):447-455.
    [12]NURVEREN K,AKDOAN A,HUANG W M.Evolution of transformation characteristic with Heating/cooling rate in Ni Ti shape memory alloys[J].Journal of Materials Processing Technology,2008,196(1/3):129-134.
    [13]ZHANG Y Q,JIANG S Y,ZHAO Y N,TANG M.Influence of cooling rate on phase transformation and microstructure of Ti-50.9%Ni shape memory alloy[J].Trans Nonferrous Met Soc China,2012,22(11):2685-2690.
    [14]ADHARAPURAPUA R R,VECCHIO K S.Effects of aging and cooling rate on the transformation of nanostructured Ti-50.8Ni[J].Journal of Alloys and Compounds,2017,693:150-163.
    [15]KULIN S A,COHEN M.On the martensitic transformation at temperature approaching absolute zero[J].Trans AIME,1950,188(9):1139-1143.
    [16]MACHLIN E S,COHEN M.Burst phenomenon in the martensitic transformation[J].Trans AIME,1951,191(9):746-754.
    [17]石俊.Ni-Ti基合金薄膜相变行为及其力学特性研究[D].南京:南京大学,2014.SHI Jun.Study on the phase transformation behavior and mechanical properties of Ni-Ti based alloy films[D].Nanjing:Nanjing University,2014.
    [18]REN J Q,SUN Q Y,XIAO L,SUN J.Temperature and strain rate effect of the deformation-induced phase transformation in pure titanium nanopillars oriented along[0001][J].Computational Materials Science,2017,126:66-73.
    [19]MA G F,QIN S J,SHANG J X,WANG F H,CHEN Y.Atomistic study on the phase transformation in Ni Ti under thermal cycling[J].Journal of Alloys and Compounds,2017,705:218-225.
    [20]FROSETH A G,VAN S H,DERLET P M.Developing realistic grain boundary networks for use in molecular dynamics simulations[J].Acta Materialia,2005,53(18):4847-4856.
    [21]李小凡,胡望宇,肖时芳,邓辉球.单晶和多晶钼纳米丝轴向拉伸的模拟对比[J].中国有色金属学报,2009,19(11):1982-1986.LI Xiao-fan,HU Wang-yu,XIAO Shi-fang,DENG Hui-qiu.Comparison of simulation of single-crystalline and polycrystalline Mo nanowires under uniaxial tensile strain[J].The Chinese Journal of Nonferrous Metals,2009,19(11):1982-1986.
    [22]STEVE P.Fast parallel algorithms for short-range molecular dynamics[J].Computational Materials Science,1995,117(1):1-19.
    [23]MORRISON K R,CHERUKARA M J,KIM H,STRACHAN A.Role of grain size on the martensitic transformation and ultra-fast superelasticity in shape memory alloys[J].Acta Materialia,2015,95:37-43.
    [24]NOSE S C.A unified formulation of the constant temperature molecular dynamics methods[J].Chem.Phys,1984,81(1):511-519.
    [25]PARRINELLO M,RAHMA A.Polymorphic transitions in single crystals:A new molecular dynamics method[J].Appl Phys,1981,52(12):7182-7190.
    [26]齐卫红,汪明朴.铅纳米薄膜熔化温度尺寸效应的分子动力学研究[J].中国有色金属学报,2006,16(7):1161-1165.QI Wei-hong,WANG Ming-pu.Molecular dynamic study on size dependent melting temperature of Pb nanofilms[J].The Chinese Journal of Nonferrous Metals,2006,16(7):1161-1165.
    [27]KO W S,GRABOWSKI B,NEUGEBAUER J.Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition[J].Physical Review B,2015,92(13):134107.
    [28]PROKOSHKIN S D,KOROTISKIY A V,BRAILOVSKI V,TURENNE S,KHMELEVSKAYA I Y,TRUBITSYNA I B.On the lattice parameters of phases in binary Ti-Ni shape memory alloys[J].Acta Materialia,2004,52(15):4479-4492.
    [29]STUKOWSKI A.Visualization and analysis of atomistic simulation data with OVITO-The open visualization tool[J].Modelling Simul Mater Sci Eng,2010,18(1):1-7.
    [30]STUKOWSKI A.Structure identification methods for atomistic simulations of crystalline materials[J].Modelling Simul Mater Sci Eng,2012,20(4):1-15.
    [31]LI J.AtomEye:An efficient atomistic configuration viewer[J].Modelling and Simulation in Materials Science and Engineering,2003,11(2):173-177.
    [32]FUTOSHI S,SHIGENOBU O,LI J.Theory of shear banding in metallic glasses and molecular dynamics calculations[J].Materials Transactions,2007,48(11):2923-2927.
    [33]WAITZ T,ANTRETTER T,FISCHER F D,SIMHA N K,KARNTHALER H P.Size effects on the martensitic phase transformation of NiTi nanograins[J].Journal of the Mechanics and Physics of Solids,2007,55(2):419-444.
    [34]SHI X B,CUI L S,JIANG D Q,YU C,GUO F.Grain size effect on the R-phase transformation of nanocrystalline NiTi shape memory alloys[J].J Mater Sci,2014,49(13):4643-4647.
    [35]徐祖耀.相变导论[M].上海:上海交通大学出版社,2014.XU Zu-yao.Introduction to phase transformation[M].Shanghai:Shanghai Jiao Tong University Press,2014.
    [36]KO W S,MAISEL S B,GRABOWSKI B,JEON J B,NEUGEBAUER J.Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys[J].Acta Materialia,2017,123:90-101.
    [37]TU J B,JIANG B H,HSU T Y.The size effect of the martensitic transformation in ZrO2-containing ceramics[J].JMater Sci,1994,29(6):1662-1665.
    [38]AHLUWALIA R,QUEK S S,WU D T.Simulation of grain size effects in nanocrystalline shape memory alloys[J].JApplied Phys,2015,117(24):244305.
    [39]HOU Z,TIAN Z,LIU R,DONG K,YU A.Formation mechanism of bulk nanocrystalline aluminium with multiply twinned grains by liquid quenching:A molecular dynamics simulation study[J].Computational Materials Science,2015,99:256-261.
    [40]梁高飞,王成全,方园.AISI304不磁钢加热过程中高温δ相形核与生长的原位观察[J].金属学报,2006,42(8):805-809.LIANG Gao-fei,WANG Cheng-quan,FANG Yuan.In situ observation of nucleation and growth of high-temperatureδphase in steel AISI 304 during heating[J].Acta Metallurgica Sinica,2006,42(8):805-809.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700