晶体材料研究——从体块晶体到微纳米晶体
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research in Crystal Materials: from Bulk Crystals to Micro-nano Crystals
  • 作者:陶绪堂 ; 王善朋 ; 王蕾 ; 尹延如 ; 刘阳 ; 张国栋 ; 张健 ; 胡强强 ; 贾志泰 ; 高泽亮 ; 穆文祥
  • 英文作者:TAO Xu-tang;WANG Shan-peng;WANG Lei;YIN Yan-ru;LIU Yang;ZHANG Guo-dong;ZHANG Jian;HU Qiang-qiang;JIA Zhi-tai;GAO Ze-liang;MU Wen-xiang;State Key Laboratory of Crystal Materials,Shangdong University;
  • 关键词:体块晶体 ; 二维晶体 ; 单晶光纤 ; 微纳晶体
  • 英文关键词:bulk crystals;;two-dimensional crystal;;crystal fiber;;micro-nano crystal
  • 中文刊名:RGJT
  • 英文刊名:Journal of Synthetic Crystals
  • 机构:山东大学晶体材料国家重点实验室;
  • 出版日期:2019-05-15
  • 出版单位:人工晶体学报
  • 年:2019
  • 期:v.48;No.247
  • 基金:科技部国家重点研发项目(2016YFB1102201,2018YFB0406502)
  • 语种:中文;
  • 页:RGJT201905001
  • 页数:24
  • CN:05
  • ISSN:11-2637/O7
  • 分类号:6-29
摘要
本文首先简要介绍了晶体的重要性和过去几十年来中国晶体材料研究取得的代表性成果。正文主要以我们课题组开展的工作为例,介绍了激光晶体、非线性光学晶体、磁光晶体、声光晶体、半导体晶体、有机晶体、有机-无机复合晶体、二维晶体、单晶光纤、药物结晶、微纳米晶体等方面的研究进展。这些研究实例的维度已覆盖体块-二维-一维-零维,晶体材料已在国防、经济建设、人类健康和科学技术发展的许多领域,发挥了重要作用并仍将是关键材料。
        In this paper,the importance of crystals and the representative achievements of crystal materials in China in the past few decades are briefly introduced at first. Taking the work of our research group as examples,the research progress of laser crystals,nonlinear optical crystals,magneto-optic crystals,acoustooptic crystals,semiconductor crystals,organic crystals,organic-inorganic composite crystals, two-dimensional crystals, crystal fibers, drug crystallization, nanocrystals are introduced. The dimensions of these research examples covered three-,two-,one-and zero-dimensions. Crystal materials have and will continue play an important role in national defense,economic construction,human health and scientific and technological developments.
引文
[1]闵乃本.晶体生长过程中的形态稳定性[J].人工晶体学报,1981,77-105.
    [2]陈创天.新型倍频晶体β-BaB2O4的生长、结构、性能-兼论新型极性材料的探索[J].人工晶体学报,1982,142-143.
    [3]蒋民华.面向新世纪的人工晶体[J].人工晶体学报,2001,20(1):1-9.
    [4] Novoselo K S,Geim A K,Morozov S,et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature,2005,438 197-200.
    [5] Clarkson W A,Greborio A,Guandalini A,et al. Sub-100 fs pulses with 12. 5W from Yb∶CALGO based oscillators[J]. Proc of SPIE,2012,8235:823511.
    [6] Sennaroglu A,Viana B,Petit J,et al. 47 fs in diode-pumped Yb∶CaGdAlO4[J]. Proc. of SPIE,2006,6190,619001.
    [7] Agnesi A,Greborio A,Pirzio F,et al. 40-fs Yb3+∶CaGdAlO4laser pumped by a single-mode 350-mW laser diode[J]. Optics express,2012,20,10077-10082.
    [8] Sevillano P,Georges P,Druon F,et al. 32-fs Kerr-lens mode-locked Yb∶CaGdAlO4oscillator optically pumped by a bright fiber laser[J].Optics letters,2014,39,6001-6004.
    [9] Modsching N,Paradis C,Labaye F,et al. Kerr lens mode-locked Yb∶CALGO thin-disk laser[J]. Optics letters,2018,43,879-882.
    [10] Tian W,Zhu J,Peng Y,et al. High power sub 100-fs Kerr-lens mode-locked Yb∶YSO laser pumped by single-mode fiber laser[J]. Optics express,2018,26,5962-5969.
    [11] Hu Q,Jia Z,Tang C,Lin N,et al. The origin of coloration of CaGdAlO4crystals and its effect on their physical properties[J]. Cryst Eng Comm,2017,19,537-545.
    [12] Hu Q,Jia Z,Veronesi S,et al. Crystal growth and optimization of Pr∶CaGdAlO4by the flux-Czochralski method[J]. Cryst Eng Comm,2018,20,590-596.
    [13] Hu Q,Jia Z,Volpi A,et al. Crystal growth and spectral broadening of a promising Yb∶CaLuxGd1-xAl O4disordered crystal for ultrafast laser application[J]. Cryst Eng Comm,2017,19,1643-1647.
    [14] Hu Q,Su X,Wang Y,et al. Spectroscopic properties and ultrafast performance of Yb∶CaLuxGd1-xAl O4crystal[J]. Laser Phys. Lett.,2017,14,045809.
    [15] Su X,Wang Y,Zhang Y,et al. Femtosecond solid-state laser based on a few-layered black phosphorus saturable absorber[J]. Optics Letters,2016,41,1945-1948.
    [16] Peters R,Krankel C,Petermann K,et al[J]. Journal of Crystal Growth,2008,310,1934-1938.
    [17] Peters V,Bolz A,Petermann K,et al[J]. Journal of Crystal Growth,2002,237-239,879-883.
    [18] Jin W,Ding J,Guo L,et al. Growth and performance research of Tb3Ga5O12magneto-optical crystal[J]. Journal of Crystal Growth,2018,484,17-20.
    [19] Geho M,Sekijima T,Fujii T. Growth of terbium aluminum garnet(Tb3Al5O12; TAG)single crystals by the hybrid laser floating zone machine[J]. Journal of Crystal Growth,2004,267,188-193.
    [20] Shimamura K,Kito T,Castel E,et al. Growth of{Tb3}[Sc2-xLux](Al3)O12Single Crystals for Visible-Infrared Optical Isolators[J]. Crystal Growth&Design,2010,10,3466-3470.
    [21] Ding S,Zhang Q,Liu W,et al. Crystal growth,defects,mechanical,thermal and optical properties of Tb3Sc2Al3O12magneto-optical crystal[J]. Journal of Crystal Growth,2018,483,110-114.
    [22] Chen Z,Yang L,Hang Y,et al. Preparation and characterization of highly transparent Ce3+doped terbium gallium garnet single crystal[J].Optical Materials,2015,47,39-43.
    [23] Chen Z,Hang Y,Yang L,et al. Great enhancement of Faraday effect by Pr doping terbium gallium garnet,a highly transparent VI-IR Faraday rotator[J]. Materials Letters,2015,145,171-173.
    [24] Wang X,Yang L,Chen Z,et al. Growth and Faraday rotation characteristics of Tb3-xNdxGa5O12single crystal[J]. Optical Materials,2015,47,157-160.
    [25] Chen Z,Yang L,Wang X,et al. High magneto-optical characteristics of Holmium-doped terbium gallium garnet crystal[J]. Optics letters,2016,41,2580.
    [26] Villora En G,Molina P,Nakamura M,et al. Faraday rotator properties of{Tb3}[Sc1. 95Lu0. 05](Al3)O12,a highly transparent terbium-garnet for visible-infrared optical isolators[J]. Applied Physics Letters,2011,99,011111.
    [27]俞宽新,丁晓红,庞兆广.声光原理与声光器件[M].科学出版社,2011,153.
    [28] Kim J S,Trivedi S B,Soos J,et al.,Development of mercurous halide crystals for acousto-optic devices. Imaging Spectrometry XII[J].International Society for Optics and Photonics,2007,6661,66610B.
    [29] Amarasinghe P M,Kim J S,Trivedi S,et al.,Long wavelength infrared(LWIR)AOTF and AOM modulators using Hg2Br2crystals[J]. SPIE Optical Engineering&Application,San Diego,California,2017,10404,104040T-1.
    [30] Chang I C,Acousto-optic devices:material issues,Proc[J]. SPIE,Spatial Light Modulators and Applications I,1984,465,55-65.
    [31] Singh N B,Hopkins R H,Mazelsky R,Conroy J J,Purification and growth of mercurous chloride single crystals[J]. Journal of Crystal Growth,1986,75,173-180.
    [32] Knuteson D J,Singh N B,Gottlieb M,et al.,Crystal growth,fabrication,and design of mercurous bromide acousto-optic tunable filters[J].Optical Engineering,2007,46,064001-064001-6.
    [33] Kim J S,Trivedi S B,Soos J,et. al. Growth of Hg2Cl2and Hg2Br2single crystals by physical vapor transport[J]. Journal of Crystal Growth,2008,310,2457-2463.
    [34] Chen H,Kim J S,Amarasinghe P,et al.,Novel semiconductor radiation detector based on mercurous halides. SPIE,Optical Engineering Applications[J]. International Society for Optics and Photonics,2015,95930G-95930G-11.
    [35] Amarasinghe P M,Kim J S,Chen H,et al.,Growth of high quality mercurous halide single crystals by physical vapor transport method for AOM and radiation detection applications[J]. Journal of Crystal Growth,2016,450,96-102.
    [36] P. M. Amarasinghe,J. S. Kim,F. Jin,et al.,Anomalous thermal expansion of mercurous halides,SPIE,Infrared Sensor,Devices,and Applications VIII,2018,107660M
    [37]贾宁,王善朋,陶绪堂.中远红外非线性光学晶体研究进展[J].物理学报,2018,67,7-18.
    [38] Schunemann P G,Zawilski K T,Pomeranz L A,et al. Advances in nonlinear optical crystals for mid-infrared coherent sources[J]. Journal of the Optical Society of America B,2016,33,D36-D43.
    [39] Liang F,Kang L.,Lin Z,et al. Mid-Infrared Nonlinear Optical Materials Based on Metal Chalcogenides:Structure-Property Relationship[J].Crystal Growth&Design,2017,17,2254-2289.
    [40] Wang S,Gao Z,Zhang X,et al. Crystal Growth and Effects of Annealing on Optical and Electrical Properties of Mid-Infrared Single Crystal Li InS2[J]. Cryst. Growth Des.,2014,14,5957-5961.
    [41] Qiao J,Liang Q,Wang S,et al. Optimized seeded Bridgman growth and temperature dependent THz optical properties of Li InS2crystals[J].Cryst Eng Comm,2019,21,2614-2619.
    [42] Jia N,Xiong X,Wang S,et al. Optimized oriented seed growth and optical properties of high-quality Li InSe2crystals[J]. Cryst Eng Comm,2018,20,7802-7808.
    [43] Jia N,Wang,S,Wang,P,et al. Ultrasensitive photodetectors based on a high-quality Li InSe2single crystal[J]. Journal of Materials Chemistry C,2018,6,12615-12622.
    [44] Wang S,Liu G,Shi Q,et al. Modified Bridgman growth and characterization of a novel mid-infrared transparent optical crystal:Li Ga3Te5[J].RSC Advances,2014,4,27830-27836.
    [45] Dai S,Jia N,Chen J,et al. Picosecond mid-infrared optical parametric amplifier based on Li In Se2with tenability extending from 3. 6 to 4. 8μm[J]. Optics Express,2017,25,12860.
    [46] Wang S,Dai S,Jia N,et al. Tunable 7-12μm picosecond optical parametric amplifier based on a Li InSe2 mid-infrared crystal[J]. Optics Letters,2017,42,2098.
    [47] Yu T,Wang S,Zhang X,et al. MnSiP2:A New Mid-IR Ternary Phosphide with Strong SHG Effect and Ultrabroad Transparency Range[J].Chemistry of Materials,2019,31,2010-2018.
    [48] Halasyamani P S,Asymmetric Cation Coordination in Oxide Materials:Influence of Lone-Pair Cations on the Intra-octahedral Distortion in Transition Metals[J]. Chem. Mater.,2004,16,3586-3592.
    [49] Kwon Y U,Lee K S,Kim Y H. AVSeO5(A=Rb,Cs)and AV3Se2O12(A=K,Rb,Cs,NH4):Hydrothermal Synthesis in the V2O5SeO2AOH System and Crystal Structure of CsVSeO5[J]. Inorg. Chem,1996,35,1161-1167.
    [50] Dussack L L,Harrison W T A,Jacobson A J. Hydrothermal syntheses and characterization of two layered molybdenum selenites,Rb2(Mo O3)3SeO3and Tl2Mo O3)3SeO3[J]. Mater. Res. Bull.,1996,31,249-255.
    [51] Kim J H,Baek J,Halasyamani P S.(NH4)2Te2WO8:A New Polar Oxide with Second-Harmonic Generating,Ferroelectric,and Pyroelectric Properties[J]. Chem. Mater.,2007,19,5637-5641.
    [52] Zhang J J,Zhang Z H,Zhang W G,et al. Polymorphism of BaTeMo2O9:A New Polar Polymorph and the Phase Transformation[J]. Chem.Mater.,2011,23,3752-3761.
    [53] Zhang W G,Tao X T,Zhang C Q,et al. Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9[J]. Cryst. Growth Des.,2008,8,304-307.
    [54] Zhang Z H,Tao X T,Zhang J J,et al. Crystengcomm,Synthesis,crystal growth,and characterization of the orthorhombic BaTeW2O9:a new polymorph of BaTeW2O9[J]. Cryst Eng Comm,2013,15,10197-10204.
    [55] Zhang J J,Tao X T,Sun Y X,et al. Top-Seeded Solution Growth,Morphology,and Properties of a Polar Crystal Cs2Te Mo3O12Cryst[J].Growth Des.,2011,11,1863-1868.
    [56]张卫国.新型非线性光学晶体BaTeMo2O9的生长及性能研究[D].济南:山东大学,2009.
    [57] Li C G,Gao Z L,Zhao P,et al. Crystallographic Investigations into the Polar Polymorphism of BaTeW2O9:Phase Transformation,Controlled Crystallization,and Linear and Nonlinear Optical Properties[J]. Cryst. Growth Des.,2019,19,1767-1777.
    [59] Maczka M,Majchrowski A,Kityk I V. Vibrational properties of the nonlinear optical crystalβ-BaTeMo2O9[J]. Vibrational Spectroscopy,2013,64,158-163.
    [60] Maczka M,Paraguassu W,Freire P T Cet al. Lattice dynamics and pressure-induced phase transitions inα-BaTeMo2O9,J. Phys.:Condens[J]. Matter,2013,25,125404.
    [61] Zhang W G,Li F,Kim S H,et al. Top-Seeded Solution Crystal Growth and Functional Properties of a Polar Material; Na2Te W2O9,Cryst[J].Growth Des.,2010,10,4091-4095.
    [62] Zhang W L,Sun J F,Wang X Q,et al. Crystal growth and optical properties of a noncentrosymmetric molybdenum tellurite,Na2Te3Mo3O16[J]. Cryst Eng Comm,2012,14,3490-3494.
    [63] Zhao S G,Jiang X X,He R,et al. A combination of multiple chromophores enhances second-harmonic generation in a nonpolar noncentrosymmetric oxide:CdTeMoO6[J]. J. Mater. Chem. C,2013,1,2906-2912.
    [64] Jin C G,Li Z,Huang L X,et al. Top-seeded solution growth and characterization of a novel nonlinear optical crystal MnTeMoO6[J]. J. Cryst.Growth,2013,369,43-46.
    [65] Gao Z L,Liu S D,Zhang J J,et al. Self-frequency-doubled BaTeMo2O9Raman laser emitting at 589 nm[J]. Opt. Express,2013,21,7821-7827.
    [66] Gao Z L,Wu Q,Liu X T,et al. Biaxial crystalα-BaTeMo2O9:theory study of large birefringence and wide-band polarized prisms design[J].Opt. Express,2015,23,3851-3860.
    [67] Wu Q,Gao Z L,Tian X X,et al. Biaxial crystalβ-BaTeMo2O9:theoretical analysis and the feasibility as high-efficiency acousto-optic Q-switch[J]. Opt. Express,2017,25,24893-24900.
    [68] Tippins,H. H.,Optical Absorption and Photoconductivity in the Band Edge of beta-Ga2O3[J]. Physical Review,1965,140,A316-A319.
    [69] Higashiwaki,M,Sasaki,K,Kuramata,A,et al. Development of gallium oxide power devices[J]. Physica Status Solidi Applications&Materials,2014,211,21-26.
    [70] Mastro,M. A,Kuramata,A,Calkins,J,et al. Perspective-Opportunities and Future Directions for Ga2O3[J]. ECS Journal of Solid State Science and Technology,2017,6,356-359.
    [71] Tsao,J. Y,Chowdhury,S,Hollis,M. A,et al. Ultrawide-Bandgap Semiconductors:Research Opportunities and Challenges[J]. Advanced Electronic Materials,2018,4,1600501.
    [72] Pearton,S. J,Yang,J,CaryIV,P. H,et al. A review of Ga2O3materials,processing,and devices[J]. Applied Physics Reviews,2018,5,011301.
    [73] Mu,W,Jia,Z,Yin,Y,et al. High quality crystal growth and anisotropic physical characterization ofβ-Ga2O3single crystals grown by EFG method[J]. Journal of Alloys and Compounds,2017,714,453-458.
    [74] Galazka,Z,Irmscher,K,Uecker,R,et al. On the bulkβ-Ga2O3single crystals grown by the Czochralski method[J]. Journal of Crystal Growth,2014,404,184-191.
    [75] Oishi,T,Koga,Y,Harada,K,et al. High-mobilityβ-Ga2O3single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact[J]. Applied Physics Express,2015,8,031101.
    [76] CHASE,A. O.,Growth ofβ-Ga2O3by the Verneuil Technique[J]. Journal of the American Ceramic Society,1964,47,470-470.
    [77] Ueda,N,Hosono,H,Waseda,R,et al. Synthesis and control of conductivity of ultraviolet transmittingβ-Ga2O3single crystals[J]. Applied Physics Letters,1997,70,3561-3563.
    [78] Víllora,E. G,Shimamura,K,Yoshikawa,Yet al. Large-sizeβ-Ga2O3single crystals and wafers[J]. Journal of Crystal Growth,2004,270,420-426.
    [79] Hideo,A,Kengo,N,Hidetoshi,T,et al. Growth ofβ-Ga2O3Single Crystals by the Edge-Defined,Film Fed Growth Method[J]. Japanese Journal of Applied Physics,2008,47,8506.
    [80] Kloc C,Siegrist T,Pflaum J,Growth of Single-Crystal Organic Semiconductors[J]. Springer Handbook of Crystal Growth,Springer,2008,845-867.
    [81]李亮,尹建红,曹珺,等.非线性光学有机晶体材料的研究进展[J].化学通报,2011,74,402-407.
    [82] Zaitseva N,Newby J,Hamel S,et al. Neutron detection with single crystal organic scintillators[J]. SPIE Hard X-Ray,Gamma-Ray,and Neutron Detector Physics XI,2009,July 20.
    [83] Oxborrow M,Breeze J D,Alford N. Room-temperature solid-state maser[J]. Nature,2012,488,353-356.
    [84] Zhang L,Liu Y,Ye X,et al. Exploring Anisotropy on Oriented Wafers of MAPb Br3Crystals Grown by Controlled Antisolvent Diffusion[J].Cryst. Growth Des.,2018,18,6652-6660.
    [85] Zhu H,Yongping,Fu YP,et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J]. Nat. Mater,2015,14,636-642.
    [86] Liu Y,Zhang Y,Zhao K,et al. A 1300 mm2ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals[J].Adv. Mater. 2018,30,1707314.
    [87] https://www. nrel. gov/pv/cell-efficiency. html
    [88] Dang Y,Liu Y,Sun Y,et al. Bulk crystal growth of hybrid perovskite material CH3NH3PbI3[J]. Cryst Eng Comm,2015,17,665-670.
    [89] Dang Y,Wei J,Liu X,et al. Layered hybrid perovskite solar cells based on single-crystalline precursor solutions with superior reproducibility[J]. Sustainable Energy Fuels,2018,2,2237-2243.
    [90] Zhang LL,Liu Y,Ye X,et al. Exploring anisotropy on oriented wafers of MAPbBr3crystals grown by controlled antisolvent diffusion[J].Cryst. Growth Des,2018,18,6652-6660.
    [91] Zhang P,Zhang G,Liu L,et al. Anisotropic optoelectronic properties of melt-grown Bulk CsPbBr3single crystal[J]. J. Phys. Chem. Lett.,2018,9,5040-5046.
    [92] Ju D,Dang Y,Zhu Z,et al. Tunable band gap and long carrier recombination lifetime of stable mixed CH3NH3PbxSn1-xBr3single crystals[J]. Chem. Mater.,2018,30,1556-1565.
    [93] Dang Y,Zhou Y,Liu X,et al. Formation of hybrid perovskite tin iodide single crystals by top‐seeded solution growth[J]. Angew. Chem.Int. Ed.,2016,55:3447-3450.
    [94] Ju D,Zheng X,Yin J,et al. Tellurium-based double perovskites A2Te X6with tunable band gap and long carrier diffusion length for optoelectronic applications[J]. ACS Energy Lett.,2019,4,228-234.
    [95] Novoselov K S,Geim A K,Morozov S V,et al[J]. Science,2004,306,666-669.
    [96] Radisavljevic B,Radenovic A,Brivio J,et al[J]. Nature nanotechnology,2011,6,147.
    [97] Remskar M,Mrzel A,Skraba Z,et al[J]. Science,2001,292,479-481.
    [98] Wang Q H,Kalantar-Zadeh K,Kis A,et al[J]. Nat Nano,2012,7,699-712.
    [99] Chhowalla M,Liu Z,Zhang H[J]. Chem Soc Rev,2015,44,2584-2586.
    [100] Li C,Wang S,Zhang X,et al[J]. Cryst Eng Comm,2017. 19,6986-6991.
    [101] Li C,Wang S,Li C,et al[J]. Journal of Materials Chemistry C,2018,6,7219-7225.
    [102] Zhang X,Lou F,Li C,et al[J]. Cryst Eng Comm,2015,17,4026-4032.
    [103] Zhang X,Wang S,Ruan H,et al[J]. Solid State Sciences,2014,37,1-5.
    [104] Barreteau C,Michon B,Besnard C,et al[J]. Cryst. Growth,2016,443,75-80.
    [105] Wang F Q,GuoY,Wang Q,et al[J]. Chem Mater,2017,29,9300-9307.
    [106] Lai J,Liu X,Ma J,et al[J]. Adv. Mater,2018,30,1707152.
    [107] Jing Y,Ma Y,Li Y,et al[J]. Nano Lett,2017,17,1833-1838.
    [108] Li L,Gong P,Sheng D,et al[J]. Adv Mater,2018,e1804541.
    [109] Parker S I,A proposed new architecture for solid-state radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,1997,395(3):328-343.
    [110] Soleimani N,Ponting B,et al. Coilable Single Crystals Fibers of Doped-YAG for High Power Laser Applications[J]. Proceedings of 2013 SPIE International Conference on Laser Technology for Defense and Security[C]. 2013,8959,895903-1.
    [111] Burrus C A,Stone J,Single crystal fiber optical devices:a Nd∶YAG fiber laser[J]. Applied Physics Letters,1975,26,318-320.
    [112] W. Kim,C. Florea,et al. Single crystal fibers for high power lasers. Proceedings of 2012 SPIE International Conference on High-Power Lasers[C]. 2012,Edinburgh,United Kingdom:SPIE,85470K-4.
    [113] X. Délen,S. Piehler,J. Didierjean,et al. 250 W single-crystal fiber Yb∶YAG laser[J]. Opt. Lett,2012,37,2898-2900.
    [114] D. Sangla,I. Martial,N. Aubry,Didierjean,et al. High power laser operation with crystal fibers[J]. Appl Phys B,2009,97,263-273.
    [115] CRAIGD. NIE,SUBHABRATA BERA,et al. Growth of single-crystal YAG fiber optics[J]. OPTICS EXPRESS,2018,24,15522-15527.
    [116] Shen Y X. Sapphire Fiber Thermometer Ranging from the Room Temperature to 1800℃[J]. Acta Optica Sinica,2001,20,83-87.
    [117] Ye L H,Song L,Li G,et al. Growth and characteristics of Ce3+ions-doped YAG single-crystal optical fibers for LED white light sources[J].Acta Optica Sinica,2009,29,169-171.
    [118] Wang Y L,Wang Q. Research Progress in Single-Crystal Fiber Amplifiers[J]. Laser&Optoelectronics Progress,2018,55,52-62.
    [119] Li R,Hu W,Liu Y,Zhu D,Micro-and nanocrystals of organic semiconductors[J]. Acc. Chem. Res.,2010,43,529? 540.
    [120] Briseno A L,MannsfeldS C B,Ling M M,et al. Patterning organic single-crystal transistor arrays[J]. Nature,2006,444,913-917.
    [121] Jiang H,Hu W,The Emergence of Organic Single Crystal Electronics,Angew[J]. Chem.,Int. Ed.,2019,10. 1002/anie. 201814439.
    [122] Xu C,He P,Liu J,et al[J]. Chem. Int. Ed.,2016,55,9519-9523.
    [123] Ye X,Liu Y,Han Q,et al. Microspacing In-Air Sublimation Growth of Organic Crystals[J]. Chem. Mater.,2018,30,412-420.
    [124] Ye X,Liu Y,Han Q,et al. 1D versus 2D cocrystals growth via microspacing in-air sublimation[J]. Nature Communications,2019,10. 1038/s41467-019-08712-1.
    [125] Guidelines for submitting supporting documentation in drug applications for the manufacture of drug substances,http://www. fda. gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM149494. pdf,1987,accessed on september 10th,2015.
    [126] Crookes D L,US Pat[P]. 1985,4,521,431.
    [127] Bauer J,Spanton S,Henry R,et al[J]. Pharmaceutical Research,2001,859-866.
    [128] Fang L,Wang L,Yao C L,et al. Crystal Structures and Vapor-Induced Crystalline Transformation of 7-Ethyl-10-Hydroxycamptothecin Pseudopolymorphs[J]. Journal of Pharmaceutical Sciences,2017,106,2998-3004.
    [129] Bernstein J,Davey R J,Henc J. Concomitant Polymorphs,Angew[J]. Chem. Int. Ed.,1999,38,3440-3461.
    [130] Yao C,Wang L,Tao X T. Tuning the Solution-Mediated Concomitant Phase Transformatio Outcome of the Piroxicam Monohydrate by Two Hydroxyl-Containing Additives:Hydroxypropyl Cellulose and H2O[J]. Cryst. Growth and Des.,2019,19,583-590.
    [131] Dunitz J D,Bernstein J. Disappearing polymorphs[J]. Acc. Chem. Res.,1995,28,193-200.
    [132] Bucar D K,Lancaster R W,Bernstein J[J]. Chem. Int. Ed.,2015,54,6972-6993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700