晶型对等规聚丙烯电导电流和空间电荷特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Crystalline Phase on Conduction Current and Space Charge in Isotactic Polypropylene
  • 作者:滕陈源 ; 张灵 ; 周远翔 ; 张云霄 ; 莫雅俊 ; 周仲柳
  • 英文作者:TENG Chenyuan;ZHANG Ling;ZHOU Yuanxiang;ZHANG Yunxiao;MO Yajun;ZHOU Zhongliu;State Key Laboratory of Control and Simulation of Power Systems and Generation Equipments, Tsinghua University;School of Electrical Engineering, Wuhan University;State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University;School of Electrical Engineering, Xinjiang University;Electric Power Planning & Engineering Institute;Hangzhou Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd.;
  • 关键词:等规聚丙烯 ; 晶型 ; 电导电流 ; 空间电荷 ; 直流击穿
  • 英文关键词:isotacticpolypropylene;;crystalline phase;;conduction current;;space charge;;DC breakdown
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:清华大学电力系统及发电设备安全控制和仿真国家重点实验室;武汉大学电气工程学院;西安交通大学电力设备电气绝缘国家重点实验室;新疆大学电气工程学院;电力规划设计总院;国网浙江省电力有限公司杭州供电公司;
  • 出版日期:2018-08-28
  • 出版单位:高电压技术
  • 年:2018
  • 期:v.44;No.309
  • 基金:国家重点基础研究发展计划(973计划)(2014CB239501);; 国家自然科学基金(51707100;51377089);; 中国博士后科学基金(2017T100079);; 电力设备电气绝缘国家重点实验室开放课题(EIPE16208)~~
  • 语种:中文;
  • 页:GDYJ201808031
  • 页数:8
  • CN:08
  • ISSN:42-1239/TM
  • 分类号:253-260
摘要
聚丙烯材料性能改善过程中,材料内部会出现以α晶或β晶为主的2种晶型。为研究晶型对等规聚丙烯(iPP)电导电流和空间电荷特性的影响,选用α和β成核剂制备了具有不同晶型的iPP–pure(对照组)、iPP–α和iPP–β试样,开展了25℃下电导电流、空间电荷和直流击穿特性的研究。结果表明:iPP–β正负直流击穿强度最高,而iPP–α最低;3组iPP试样的电导电流大小为iPP–α>iPP–pure>iPP–β,空间电荷限制电流的转折电压大小为iPP–α>iPP–β>iPP–pure;-20 MV/m电场强度极化30 min后,3组iPP试样在极化过程中均出现正负空间电荷积聚;去极化过程中iPP–pure中空间电荷积聚量最大,而iPP–α中最少。分析认为:α晶和β晶的晶胞形态使得iPP–α中存在大量浅陷阱、iPP–β中平均陷阱深度较深;载流子在iPP–α中容易迁移并产生俄歇效应,而在iPP–β中容易在试样表面附近被捕获。
        An α or β crystalline phase will appear primarily during the improvement of polypropylene materials. To study the influences of crystalline phase on conduction current and space charge in isotactic polypropylene(iPP), α and β nucleating agents are adopted separately to prepare iPP samples with different crystalline phases, denoted as iPP–pure, iPP–α, and iPP–β, for the study of conduction current, space charge, and DC breakdown characteristics at 25 ℃. The results show that iPP–β possesses the maximum breakdown strength under both positive and negative DC voltages, while iPP–α is the minimum. The magnitude of conduction current is: iPP–α > iPP–pure > iPP–β, and the transition voltage of space charge limited current is: iPP–α > iPP–β> iPP–pure. Both positive and negative space charges can be accumulated in three groups of iPP samples after 30 minutes polarization under-20 MV/m at 25 ℃. During the depolarization process, the amount of space charge accumulated in iPP–pure is the largest, while iPP–α is the smallest. Analyses reveal that the crystalline morphologies of α crystalline phase and β crystalline phase can result in the formation of shallow traps in iPP–α and deep traps in iPP–β, respectively, which will lead to a larger carrier mobility in iPP–α accompanying the Anger effect and capture space charge near the surface of iPP–β sample.
引文
[1]周远翔,赵健康,刘睿,等.高压/超高压电力电缆关键技术分析及展望[J].高电压技术,2014,40(9):2593-2612.ZHOU Yuanxiang,ZHAO Jiankang,LIU Rui,et al.Key technical analysis and prospect of high voltage and extra-high voltage power cable[J].High Voltage Engineering,2014,40(9):2593-2612.
    [2]ORTON H.电力电缆技术综述[J].高电压技术,2015,41(4):1057-1067.ORTON H.Power cable technology review[J].High Voltage Engineering,2015,41(4):1057-1067.
    [3]陈铮铮,赵健康,欧阳本红,等.直流电缆料工作温度和击穿特性的纳米改性研究[J].高电压技术,2015,41(4):1214-1227.CHEN Zhengzheng,ZHAO Jiankang,OUYANG Benhong,et al.Study on the nanoparticle-modification of working temperature and breakdown characteristics for insulating materials in DC cables[J].High Voltage Engineering,2015,41(4):1214-1227.
    [4]MAZZANTI G,MARZINOTTO M.Extruded cables for high voltage direct current transmission[M].New Jersey,USA:IEEE Press,2013:91-92.
    [5]何金良,彭琳,周垚.环保型高压直流电缆绝缘材料研究进展[J].高电压技术,2017,43(2):337-343.HE Jinliang,PENG Lin,ZHOU Yao.Research progress of environment-friendly HVDC power cable insulation materials[J].High Voltage Engineering,2017,43(2):337-343.
    [6]LEE J S,CHO K C,KU K H,et al.Recyclable insulation material based on polyethylene for power cable[C]∥2012 International Conference on Condition Monitoring and Diagnosis.Bali,Indonesia:IEEE,2012:88-90
    [7]张冶文,赵晖,李宗泽,等.聚乙烯与聚丙烯中空间电荷注入特性的比较[J].高电压技术,2014,40(9):2613-2618.ZHANG Yewen,ZHAO Hui,LI Zongze,et al.Comparison of space charge injection behaviors between polythene and polypropylene[J].High Voltage Engineering,2014,40(9):2613-2618.
    [8]KURAHASHI K,MATSUDA Y,UEDA A,et al.Application of a novel polypropylene to the insulation of an electric power cable[J].Electrical Engineering in Japan,2006,155(3):1-8.
    [9]ZHOU Y X,HE J L,HU J,et al.Evaluation of polypropylene/polyolefin elastomer blends for potential recyclable HVDC cable insulation applications[J].IEEE Transactions on Dielectrics and Electrical Insulation,2015,22(2):673-681.
    [10]王国尧,查小月,张照,等.弹性体和成核剂协同改性聚丙烯研究进展[J].工程塑料应用,2015,43(4):139-142.WANG Guoyao,ZHA Xiaoyue,ZHANG Zhao,et al.Research progress on synergistic modification of polypropylene by both elastomer and nucleating agent[J].Engineering Plastics Application,2015,43(4):139-142.
    [11]张灵,周远翔,滕陈源,等.温度场下非等温结晶对低密度聚乙烯空间电荷特性的影响[J].高电压技术,2017,43(2):420-428.ZHANG Ling,ZHOU Yuanxiang,TENG Chenyuan,et al.Influence of non-isothermal crystallization on space charge characteristics in low-density polyethylene at temperature fields[J].High Voltage Engineering,2017,43(2):420-428.
    [12]程子霞,滕陈源,张灵,等.附生结晶对低密度聚乙烯空间电荷注入和输运特性的影响[J].高电压技术,2017,43(2):405-413.CHENG Zixia,TENG Chenyuan,ZHANG Ling,et al.Influence of epitaxial crystallization on space charge injection and transport characteristics in low-density polyethylene[J].High Voltage Engineering,2017,43(2):405-413.
    [13]ZHAO H,XU M,ZHANG W,et al.The effect of crystal forms on dielectric properties of polypropylene[C]∥IEEE International Conference on Properties&Applications of Dielectric Materials.Bali,Indonesia:IEEE,2006:778-781.
    [14]WU Y H,ZHA J W,LI W K,et al.A remarkable suppression on space charge in isotatic polypropylene by inducing theβ-crystal formation[J].Applied Physics Letters,2015,115(11):1129011-1129015.
    [15]ZHA J W,YAN H D,LI W K,et al.Morphology and crystalline-phase-dependent electrical insulating properties in tailored polypropylene for HVDC cables[J].Applied Physics Letters,2016,109(22):222902-222907.
    [16]DONG M,GUO Z,SU Z,et al.The effects of crystallization condition on the microstructure and thermal stability of istactic polypropylene nucleated byβ‐form nucleating agent[J].Journal of Applied Polymer Science,2011,119(3):1374-1382.
    [17]JONES A T,AIZLEWOOD J M,BECKETT D R.Crystalline forms of isotactic polypropylene[J].Macromolecular Chemistry&Physics,1964,75(1):134-158.
    [18]VARGA J,MENYHáRD A.Effect of solubility and nucleating duality of N,N‘-Dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene[J].Macromolecules,2007,40(40):2422-2431.
    [19]陈季丹.电介质物理学[M].北京:机械工业出版社,1982:227-228.CHEN Jidan.Dielectric physics[M].Beijing,China:Mechanical Industry,1982:227-228.
    [20]雷清泉,石林爽,田付强,等.电晕老化前后100HN和100CR聚酰亚胺薄膜的电导电流特性实验研究[J].中国电机工程学报,2010,30(13):109-114.LEI Qingquan,SHI Linshuang,TIAN Fuqiang,et al.Experimental research on conduction current characteristics of 100HN and 100CR polyimide film before and after corona aging[J].Proceedings of the CSEE,2010,30(13):109-114.
    [21]DANG B,ZHOU Y,HE J L,et al.Relationship between space charge behaviors and trap level distribution in polypropylene/propylene ethylene rubber/Zn O nanocomposites[C]∥2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena.Toronto,Canada:IEEE,2016:595-598.
    [22]DISSADO L A,FOTHERGILL J C.Electrical degradation and breakdown in polymers[M].London,UK:Peter Peregrinus,1992:323-329.
    [23]KWAN C K.Dielectric phenomena in solids[M].London,UK:Elsevier Academic Press,2004:400-401.
    [24]何曼君,张红东,陈维孝,等.高分子物理[M].上海:复旦大学出版社,2015:171-172.HE Manjun,ZHANG Hongdong,CHEN Weixiao,et al.Polymer physics[M].Shanghai,China:Fudan University Press,2015:171-172.
    [25]LI X,DU Q,KANG J,et al.Influence of microstructure on space charges of polypropylene[J].Journal of Polymer Science,Part B:Polymer Physics,2002,40(4):365–374.
    [26]LIN Y,DU W,TU D,et al.Space charge distribution and crystalline structure in low density polyethylene(LDPE)blended with high density polyethylene(HDPE)[J].Polymer International,2005,54(2):465-470.
    [27]SHEN W W,MU H B,ZHANG G J,et al.Identification of electron and hole trap based on isothermal surface potential decay model[J].Journal of Applied Physics,2013,113(8):0837061-0837066.
    [28]JONES J P,LLEWELLYN J P,LEWIST J.The contribution of field-induced morphological change to the electrical aging and breakdown of polyethylene[J].IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(5):951-966.
    [29]SEE A,DISSADO L A,FOTHERGILL J C.Electric field criteria for charge packet formation and movement in XLPE[J].IEEE Transactions on Dielectrics and Electrical Insulation,2001,8(6):859-866.
    [30]高观志,黄维.固体中的电输运[M].雷清泉,译.北京:科学出版社,1991:76-98.CAO Zhiguan,HUANG Wei.Electrical transport in solids[M].LEI Qingquan,translated.Beijng,China:Science Press,1991:76-98.
    [31]LI S T.Charge dynamics:linking traps to insulation failure[C]∥IEEE Conference on Properties and Applications of Dielectric Materials.Sydney,Australia:IEEE,2015:1-14.
    [32]屠德民,刘荣生.聚合物的空间电荷效应与电击穿机理[J].西安交通大学学报,1990,24(5):109-114.TU Demin,LIU Rongsheng.The mechanism of electric breakdown and effect of space charge in polyethylene[J].Journal of Xi’an Jiaotong University,1990,24(5):109-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700