碳电弧中~(#24106)C_(78)Cl_6的捕获与结构表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Capture and structure characterization of ~(#24106)C_(78)Cl_6 in carbon arc
  • 作者:钟圆圆 ; 田寒蕊 ; 姚阳榕 ; 张欣 ; 石祥美 ; 张美林 ; 谢素原 ; 黄荣彬 ; 郑兰荪
  • 英文作者:ZHONG Yuanyuan;TIAN Hanrui;YAO Yangrong;ZHANG Xin;SHI Xiangmei;ZHANG Meilin;XIE Suyuan;HUANG Rongbin;ZHENG Lansun;State Key Laboratory of Physical Chemistry of Solid Surfaces,College of Chemistry and Chemical Engineering,Xiamen University;
  • 关键词:富勒烯 ; 电弧放电 ; 晶体结构 ; 独立五元环规则 ; 形成机制
  • 英文关键词:fullerenes;;arc discharge;;crystallographic structure;;isolated pentagon rule;;formation mechanism
  • 中文刊名:XDZK
  • 英文刊名:Journal of Xiamen University(Natural Science)
  • 机构:厦门大学化学化工学院固体表面物理化学国家重点实验室;
  • 出版日期:2018-09-21 10:29
  • 出版单位:厦门大学学报(自然科学版)
  • 年:2019
  • 期:v.58;No.268
  • 基金:国家自然科学基金(51572231,21721001)
  • 语种:中文;
  • 页:XDZK201901004
  • 页数:7
  • CN:01
  • ISSN:35-1070/N
  • 分类号:33-39
摘要
碳电弧放电法是合成富勒烯及其衍生物的最重要方法之一,但电弧反应过程复杂,涉及的衍生化机制尚不明确.采用电弧法合成含有氯化富勒烯的碳灰,借助高效液相色谱法对其进行分离、纯化,得到了符合独立五元环规则的氯化富勒烯~(#24106)C_(78)Cl_6,结合X-射线单晶衍射、质谱、紫外-可见吸收光谱对其进行结构表征,证明~(#24106)C_(78)Cl_6与已有的氯化物~(#24106)C_(78)Cl_(18)、~(#24106)C_(78)Cl_(30)在六并苯片段具有相同的氯原子加成[5,6,6]位点,同时也证明了在氯参与的碳电弧中,富勒烯在靠近电弧中心的较高温区发生氯化反应,而氯化碳簇的加成反应发生于更低的温区.
        Arc discharge of carbon was one of the most important methods for the synthesis of fullerenes and their chlorinated derivatives.However,the arc reaction process was complicated and the involved derivatization mechanism was still unclear.Herein the carbon ash containing chlorinated fullerenes was synthesized using the carbon arc.Separated and purified with high performance liquid chromatography,the chlorinated fullerene~(#24106 )C_(78)Cl_6conformed to the isolated pentagon rule was obtained.With X-ray single crystal diffraction,mass spectrometry and spectroscopy,~(#24106 )C_(78)Cl_(6 )was confirmed to have the same chlorine atom addition pattern as those of high chloride~(#24106 )C_(78)Cl_(18 )and~(#24106 )C_(78)Cl_(30 )at the[5,6,6]sites of the coronene segment.The capture of~(#24106)C_(78)Cl_6supported that the chlorination reaction occurred in the higher temperature zone near the center of the arc,whereas the addition reaction of the chlorinated carbon cluster occurred in the lower temperature zone in the complex chlorine-involving carbon arc.
引文
[1] KRTSCHMER W,LAMB L D,FOSTIROPOULOS K,et al.Solid C60:a new form of carbon[J].Nature,1990,347(6291):354-358.
    [2] TAN Y Z,XIE S Y,HUANG R B,et al.The stabilization of fused-pentagon fullerene molecules[J].Nat Chem,2009,1(6):450-460.
    [3] POPOV A A,YANG S,DUNSCH L.Endohedral fullerenes[J].Chem Rev,2013,113(8):5989-6113.
    [4] HEATH J R.Synthesis of C60from small carbon clusters[J].ACS Symp Ser,1992,481:1-23.
    [5] HUA X,CAGIN T,CHE J,et al.QM(DFT)and MD studies on formation mechanisms of C60 fullerenes[J].Nanotechnology,2000,11(2):85-88.
    [6] KHAN S D,AHMAD S.Modelling of C2addition route to the formation of C60[J].Nanotechnology,2006,17(18):4654-4658.
    [7] CURL R F,LEE M K,SCUSERIA G E.C60buckminster fullerene high yields unraveled[J].J Phys Chem A,2008,112(46):11951-11955.
    [8] SAHA B,IRLE S,MOROKUMA K.Hot giant fullerenes eject and capture C2 molecules:QM/MD simulations with constant density[J].J Phys Chem C,2011,115(46):22707-22716.
    [9] DUNK P W,MULET-GAS M,NAKANISHI Y,et al.Bottom-up formation of endohedral mono-metallofullerenes is directed by charge transfer[J].Nat Commun,2014,5:5844.
    [10] MULET-GAS M,ABELLA L,DUNK P W,et al.Small endohedral metallofullerenes:exploration of the structure and growth mechanism in the Ti@C2n(2n=26-50)family[J].Chem Sci,2015,6(1):675-686.
    [11] GAO F,XIE S Y,HUANG R B,et al.Significant promotional effect of CCl4 on fullerene yield in the graphite arc-discharge reaction[J].Chem Commun,2003(21):2676-2677.
    [12] XIE S Y,GAO F,LU X,et al.Capturing the labile fullerene[50]as C50Cl10[J].Science,2004,304(5671):699.
    [13] HAN X,ZHOU S J,TAN Y Z,et al.Crystal structures of saturn-like C50Cl10 and pineapple-shaped C64Cl4:geometric implications of double-and triple-pentagonfused chlorofullerenes[J].Angew Chem Int Ed,2008,47(29):5340-5343.
    [14] TAN Y Z,HAN X,WU X,et al.An entrant of smaller fullerene:C56captured by chlorines and aligned in linear chains[J].J Am Chem Soc,2008,130(46):15240-15241.
    [15] TAN Y Z,LIAO Z J,QIAO Z Z,et al.Two Ih-symmetrybreaking C60isomers stabilized by chlorination[J].Nat Mater,2008,7(10):790-794.
    [16] TAN Y Z,LI J,ZHU F,et al.Chlorofullerenes featuring triple sequentially fused pentagons[J].Nat Chem,2010,2(4):269-273.
    [17] TAN Y Z,ZHOU T,BAO J,et al.C72Cl4:apristine fullerene with favorable pentagon-adjacent structure[J].J Am Chem Soc,2010,132(48):17102-17104.
    [18] TAN Y Z,CHEN R T,LIAO Z J,et al.Carbon arc production of heptagon-containing fullerene[68][J].Nat Commun,2011,2:420.
    [19] ZHOU T,TAN Y Z,SHAN G J,et al.Retrieving the most prevalent small fullerene C56[J].Chemistry,2011,17(31):8529-8532.
    [20] SHAN G J,TAN Y Z,ZHOU T,et al.C64Cl8:a strainrelief pattern to stabilize fullerenes containing triple directly fused pentagons[J].Chem Asian J,2012,7(9):2036-2039.
    [21] TAN Y Z,LI J,DU M Y,et al.Exohedrally stabilized C70 isomer with adjacent pentagons characterized by crystallography[J].Chem Sci,2013,4(7):2967-2970.
    [22] GAO C L,LI X,TAN Y Z,et al.Synthesis of longsought C66 with exohedral stabilization[J].Angew Chem Int Ed,2014,53(30):7853-7855.
    [23] GAO C L,ABELLA L,TIAN H R,et al.Double functionalization of a fullerene in drastic arc-discharge conditions:synthesis and formation mechanism of C2v(2)-C78Cl6(C5Cl6)[J].Carbon,2018,129:286-292.
    [24] KROTO H W.The stability of the fullerenes Cn,with n=24,28,32,36,50,60and 70[J].Nature,1987,329(6139):529-531.
    [25] FOWLER P W,MANOLOPOULOS D E.An atlas of fullerenes[J].Fullerene Science and Technology,1996,4(3):623-624.
    [26] TAMM N B,KOSAYA M P,FRITZ M A,et al.Synthesis,isolation,and X-ray structural characterization of trifluoromethylated C78fullerenes:C78(2)(CF3)10/12and C78(3)(CF3)12/14[J].Nanosystems:Physics,Chemistry,Mathematics,2016:111-117.doi:10.17586/2220-8054-2016-7-1-111-117.
    [27] KEMNITZ E,TROYANOV S I.Chlorides of isomeric C78fullerenes:C78(1)Cl30,C78(2)Cl30,and C78(2)Cl18[J].Mendeleev Communications,2010,20(2):74-76.
    [28] SHUSTOVA N B,NEWELL B S,MILLER S M,et al.Discovering and verifying elusive fullerene cage isomers:structures of C2-p11-(C74-D3h)(CF3)12and C2-p11-(C78-D3h(5))(CF3)12[J].Angew Chem Int Ed,2007,46(22):4111-4114.
    [29] SIMEONOV K S,AMSHAROV K Y,JANSEN M.Chlorinated derivatives of C78-fullerene isomers with unusually short intermolecular halogen-halogen contacts[J].Chemistry,2008,14(31):9585-9590.
    [30] HAN A H,WAKAHARA T,MAEDA Y,et al.A new method for separating the D3and C2visomers of C78[J].New J Chem,2009,33(3):497-500.
    [31] TROYANOV S I,KEMNITZ E.The first crystal structure of a halogenated higher fullerene,C78Br18,obtained by bromination of a fullerene mixture[J].Eur J Org Chem,2003,2003(20):3916-3919.
    [32] TROYANOV S I,TAMM N B,CHEN C,et al.Synthesis and structure of a highly chlorinated C78:C78(2)Cl30[J].Z Anorg Allg Chem,2009,635(12):1783-1786.
    [33] KOSAYA M P,FRITZ M A,BROTSMAN V A,et al.Synthesis,isolation and structure of trifluoromethylated fullerene D3-C78,C78(1)(CF3)10-18[J].Chem Asian J,2016,11(7):1000-1003.
    [34] TAMM N B,TROYANOV S I.Isomer C78(2)captured as the perfluoroethyl derivative C78(C2F5)10[J].Mendeleev Commun,2009,19(4):198-199.
    [35] OLMSTEAD M M,DE BETTENCOURT-DIAS A,DUCHAMP J C,et al.Isolation and structural characterization of the endohedral fullerene Sc3N@C78[J].Angew Chem Int Ed,2001,40(7):1223-1225.
    [36] CAO B P,WAKAHARA T,TSUCHIYA T,et al.Isolation,characterization,and theoretical study of La2@C78[J].J Am Chem Soc,2004,126(30):9164-9165.
    [37] ZHAO P,LI M Y,GUO Y J,et al.Single step StoneWales transformation linking two thermodynamically stable Sc2O@C78isomers[J].Inorg Chem,2016,55(5):2220-2226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700