射频等离子体球化中钼粉颗粒加热过程的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Heating Process of Molybdenum Powder in Radio Frequency Plasma Spheroidization
  • 作者:陈文波 ; 陈伦江 ; 刘川东 ; 程昌明 ; 童洪辉
  • 英文作者:Chen Wenbo;Chen Lunjiang;Liu Chuandong;Cheng Changming;Tong Honghui;University of South China;Southwestern Institute of Physics;
  • 关键词:射频等离子体 ; 钼粉颗粒 ; 加热过程 ; 数值模拟
  • 英文关键词:radio frequency plasma;;molybdenum particles;;heating process;;numerical simulation
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:南华大学;核工业西南物理研究院;
  • 出版日期:2019-03-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.392
  • 基金:国家自然科学基金(11535003)
  • 语种:中文;
  • 页:COSE201903025
  • 页数:6
  • CN:03
  • ISSN:61-1154/TG
  • 分类号:163-168
摘要
对射频等离子体球化中钼粉颗粒的加热过程进行研究可以为优化等离子体制备球形钼粉的工艺过程提供参考。采用了数值模拟的方法研究了线圈电流频率、粉枪位置及送粉速率等参数对钼粉颗粒在射频等离子体中的运动轨迹及加热过程的影响效应。结果表明:线圈电流频率较低时,等离子体炬轴线附近的温度更高,钼粉颗粒在等离子体中运动时能够达到的温度也更高;改变粉枪位置仅对粒径较小颗粒的运动和加热有较大的影响;降低送粉速率可以提高颗粒从等离子体中获得的能量,从而在一定程度上提升钼粉的球化率。
        Study on heating process of molybdenum particles in radio frequency plasma can provide theoretical guidelines for improving preparation process of plasma spheroidization. The effect of coil current frequency, position of injection probe tip and powder feeder rate on motion trajectories and heating process of molybdenum particles in plasma was studied by a numerical simulation method. The results show that molybdenum particles can be heated to higher temperature during the spheroidization process when coil current frequency is lower because of higher plasma temperature; Changing of injection probe tip position has great effect on motion and heating of smaller particles; Decreasing of powder feeder rate can increase the energy from plasma, thus improving the spheroidization effect.
引文
[1] Liu Xiaoping(刘晓平),Wang Kuaishe(王快社),Hu Ping(胡平)et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2016, 45(5):1325
    [2] Liu Xiaoping, Wang Kuaishe, Hu Ping et al. International Journal of Minerals, Metallurgy and Materials[J], 2015,12(11):1212
    [3] Dai Zhen, Cao Yongge, Ma Chaoyang et al. Rare Metal Materials and Engineering[J], 2017, 46(2):333
    [4] Zhu Hailong, Tong HongHui, Yang Fazhang et al. Advanced Materials Research[J], 2014, 58(10):221
    [5] Li Baoqiang, Sun Zhiqiang, Jin Huacheng et al. International Journal of Refractory Metals and Hard Materials[J], 2016,59:105
    [6] Zhu Hailong, Tong Honghui, Cheng Changming et al. Int Journal of Refractory Metals and Hard Materials[J], 2017,66:72
    [7] Lu Xin, Zhu Langping, Zhang Bing et al. Computational Materials Science[J], 2012, 65:13
    [8] Zhu Langping(朱郎平),Lu Xin(路新),Liu Chengcheng(刘程程)et al. Journal of Aeronautical Materials(航空材料学报)[J], 2017, 37(3):16
    [9] Chen Xi(陈熙). Heat Transfer and Flow of Thermal Plasma(热等离子体传热与流动)[M]. Beijing:Science Press,2009:551
    [10] Proulx P, Mostaghimi J, Boulos M I. International Journal of Heat and Mass Transfer[J], 1985, 28(7):1327
    [11] Ye R, Ishigaki T, Jurewicz J et al. Plasma Chemistry and Plasma Processing[J], 2004, 24(4):555
    [12] Tong J B, Lu X,Liu C C et al. Applied Thermal Engineering[J], 2016, 100:1198
    [13] Hossain M M, Alam M R, Watanabe T. Japanese Journal of Applied Physics[J], 2013, 52(1):219
    [14] Colombo V, Ghedini E, Gherardi M et al. Plasma Sources Science&Technology[J], 2012, 21(21):025 001
    [15] He J P, Bai L Y, Jin H C et al. Powder Technology[J], 2016,302:288
    [16] Hossain M M, Yao Y, Watanabe T. Thin Solid Films[J], 2008,516(19):6634
    [17] Shigeta M, Sato T, Nishiyama H. International Journal of Heat and Mass Transfer[J], 2004, 47:707
    [18] Ye R, Li J G, Ishigaki T. Thin Solid Films[J], 2007, 515:4251
    [19] Bernardi D, Colombo V, Ghedini E et al. The European Physical Journal D[J], 2004, 28:423
    [20] Chen Wenbo(陈文波),Chen Lunjiang(陈伦江),Liu Chuandong(刘川东)et al. Chinese Journal of Vacuum Science and Technology(真空科学与技术学报)[J],2017,37(6):49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700