锑同位素测试方法及其应用研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress in Measurement and Application of Antimony Isotope
  • 作者:赵博 ; 朱建明 ; 秦海波 ; 谭德灿 ; 徐文坡
  • 英文作者:ZHAO Bo;ZHU Jian-ming;QIN Hai-bo;TAN De-can;XU Wen-po;State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences;University of Chinese Academy of Sciences;State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences;
  • 关键词:锑同位素 ; 分析方法 ; 分馏机理 ; 同位素应用 ; 多接受杯电感耦合等离子体质谱仪
  • 英文关键词:Sb isotopes;;analytical methods;;fractionation mechanisms;;isotope application;;MC-ICP-MS
  • 中文刊名:KYDH
  • 英文刊名:Bulletin of Mineralogy,Petrology and Geochemistry
  • 机构:中国科学院地球化学研究所环境地球化学国家重点实验室;中国科学院大学;中国地质大学(北京)地质过程与矿产资源国家重点实验室;
  • 出版日期:2018-05-30 16:34
  • 出版单位:矿物岩石地球化学通报
  • 年:2018
  • 期:v.37
  • 基金:国家重点基础研究发展计划项目(973)(2014CB238903);; 国家自然科学基金项目(41673017,41473028)
  • 语种:中文;
  • 页:KYDH201806020
  • 页数:9
  • CN:06
  • ISSN:52-1102/P
  • 分类号:183-191
摘要
随着接收电感耦合等离子质谱仪及其分析技术的快速发展,锑同位素得以深入研究,从而为有效示踪环境中锑来源与地球化学过程成为可能。本文在锑同位素分析方法及其应用研究最新进展评述的基础上,结合笔者团队开发的Sb同位素分析方法,指出离子交换树脂法与巯基纤维或树脂相结合的纯化分离可能是首选的前处理方案;而元素外标法与氢化物系统的结合,是进行仪器质量分馏校正的最佳途径,其分析精度和效率都可以大幅提升,分析精度可达0.4ε。氧化还原、蒸发冷凝和吸附过程等是产生锑同位素分馏的主要原因。目前,锑同位素在环境污染和考古学研究中已展现了独特的优势,并将随着其分馏机理的进一步阐明和应用范围的拓展,在地学及其他诸领域得到更广泛的应用。
        Antimony(Sb) is a toxic and potentially carcinogenic metalloid element, and is widely used in industrial products. Currently, environmental pollution of Sb has attracted many scholars' attention due to the enhancement of human activities. With the rapid development of MC-ICP-MS technology and purification techniques, the study of Sb isotopes has been become reality. Antimony isotope has been served as a powerful tool for tracing the source and geochemical process of antimony in the environment. On the basis of the review of the latest progress in the analysis of antimony isotopes and their application, and combining with the study of the Sb isotope analysis developed by us, We suggested the separation of Sb isotopes from sample using ionic exchange resin combined with thio-fiber(TCF) or resin may be a preferred scheme, and the combination of elemental doping(ED) and hydride generation system(HG) is the best way to correct instrumental mass bias. Measures under such conditions can have analytical accuracy and precision of Sb isotopes better than 0.4ε. At present, antimony isotope has shown its unique advantages in environmental pollution and archaeological research. Therefore, with the further studies of its fractionation mechanism and the extension of its application research, antimony isotopes will be widely used in geosciences and in many other fields.
引文
Ainsworth N, Cooke J A, Johnson M S. 1990. Distribution of antimony in contaminated grassland: 1-Vegetation and soils. Environmental Pollution, 65(1): 65-77
    Anbar A D, Knab K A, Barling J. 2001. Precise determination of mass-dependent variations in the isotopic composition of molybdenum using MC-ICPMS. Analytical Chemistry, 73(7): 1425-1431
    Araki Y, Tanimizu M, Takahashi Y. 2009. Antimony isotopic fractionation during adsorption on ferrihydrite. Geochimica et Cosmochimica Acta Supplement, 73: A49
    Asaoka S, Takahashi Y, Araki Y, Tanimizu M. 2011. Preconcentration method of antimony using modified thiol cotton fiber for isotopic analyses of antimony in natural samples. Analytical Sciences, 27(1): 25-28
    Ashley P M, Craw D, Graham B P, Chappell D. 2003. Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand. Journal of Geochemical Exploration, 77(1): 1-14
    Baroni F, Boscagli A, Protano G, Riccobono F. 2000. Antimony contents in plant species growing in an Sb-mining district (Tuscany, Italy). Trace Metals in the Environment, 4: 341-361
    Baxter D C, Rodushkin I, Engström E, Malinovsky D. 2006. Revised exponential model for mass bias correction using an internal standard for isotope abundance ratio measurements by multi-collector inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 21(4): 427-430
    Bullen T D, White A F, Childs C W, Vivit D V, Schulz M S. 2001. Demonstration of significant abiotic iron isotope fractionation in nature. Geology, 29(8): 699-702
    Chang T L, Qian Q Y, Zhao M T, Wang J. 1993. The isotopic abundance of antimony. International Journal of Mass Spectrometry and Ion Processes, 123(1): 77-82
    Clemente R, Dickinson N M, Lepp N W. 2008. Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environmental Pollution, 155(2): 254-261
    Coles G C, Chappell L H. 1979. Schistosoma mansoni: Effects of antimony on immature and adult worms. Experimental Parasitology, 47(1): 49-53
    Coplen T B. 2011. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Communications in Mass Spectrometry, 25(17): 2538-2560
    De Laeter J R, Hosie D J. 1988. The isotopic composition of antimony. International Journal of Mass Spectrometry and Ion Processes, 83(3): 311-318
    Dedina J, Tsalev D L. 1995. Hydride generation atomic absorption spectrometry. New York: Wiley
    Degryse P, Lobo L, Shortland A, Vanhaecke F, Blomme A, Painter J, Gimeno D, Eremin K, Greene J, Kirk S, Waltong M. 2015. Isotopic investigation into the raw materials of Late Bronze Age glass making. Journal of Archaeological Science, 62:153-160
    Flynn H C. 2003. Biosensor assessment of arsenic and antimony bioavailability in mining soils and sediments. Doctoral Thesis. Aberdeen: University of Aberdeen
    Fors Y, Nilsson T, Risberg E D, Sandstr?m M, Torssander P. 2008. Sulfur accumulation in pinewood (Pinus sylvestris) induced by bacteria in a simulated seabed environment: Implications for marine archaeological wood and fossil fuels. International Biodeterioration & Biodegradation, 62(4): 336-347
    Grevesse N, Anders E. 1989. Solar-system abundances of the elements: A new table. AIP Conference Proceedings, 183(1): 1
    He M C. 2007. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China. Environmental Geochemistry and Health, 29(3): 209-219
    Johnson T M, Bullen T D, Zawislanski P T. 2000. Selenium stable isotope ratios as indicators of sources and cycling of selenium: Results from the Northern Reach of San Francisco Bay. Environmental Science & Technology, 34(11): 2075-2079
    Johnson T M. 2012. Stable Isotopes of Cr and Se as Tracers of Redox Processes in Earth Surface Environments. In: Baskaran M, ed. Handbook of Environmental Isotope Geochemistry. Berlin, Heidelberg: Springer, 155-175
    Kimbrough D E, Carder N H. 1999. Off-site forensic determination of waterborne elemental emissions: A case study at a secondary lead smelter. Environmental Pollution, 106(3): 293-298
    Kumamaru T, Yamamoto M, Nakata F, Tsubota H, Nishikida K. 1994. Direct measurement of isotope ratio of antimony in seawater by hydride generation/inductively coupled plasma mass spectrometry. Analytical Sciences, 10(4): 651-653
    Lobo L, Devulder V, Degryse P, Vanhaecke F. 2012. Investigation of natural isotopic variation of Sb in stibnite ores via multi-collector ICP-mass spectrometry-perspectives for Sb isotopic analysis of Roman glass. Journal of Analytical Atomic Spectrometry, 27(8): 1304-1310
    Lobo L, Degryse P, Shortland A, Vanhaecke F. 2013. Isotopic analysis of antimony using multi-collector ICP-mass spectrometry for provenance determination of Roman glass. Journal of Analytical Atomic Spectrometry, 28(8): 1213-1219
    Lobo L, Degryse P, Shortland A, Eremin K, Vanhaecke F. 2014. Copper and antimony isotopic analysis via multi-collector ICP-mass spectrometry for provenancing ancient glass. Journal of Analytical Atomic Spectrometry, 29(1): 58-64
    Marin L, Lhomme J, Carignan J. 2001. Determination of selenium concentration in sixty five reference materials for geochemical analysis by GFAAS after separation with Thiol cotton. Geostandards and Geoanalytical Research, 25(2-3): 317-324
    McCallum R I. 2005. Occupational exposure to antimony compounds. Journal of Environmental Monitoring, 7(12): 1245-1250
    Mitsunobu S, Harada T, Takahashi Y. 2006. Comparison of antimony behavior with arsenic under various soil redox conditions. Chinese Journal of Geochemistry, 25(S1): 98-99
    Pacyna J M, Pacyna E G. 2001. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environmental Reviews, 9(4): 269-298
    Petrick K, Krivan V. 1987. Radiotracer investigation of the interference of hydrofluoric acid in the determination of arsenic and antimony by hydride generation atomic absorption spectrometry. Analytical Chemistry, 59(20): 2476-2479
    Pietruszka A J, Reznik A D. 2008. Identification of a matrix effect in the MC-ICP-MS due to sample purification using ion exchange resin. International Journal of Mass Spectrometry, 270(1-2): 23-30
    Quentel F, Filella M. 2002. Determination of inorganic antimony species in seawater by differential pulse anodic stripping voltammetry: Stability of the trivalent state. Analytica Chimica Acta, 452(2): 237-244
    Resongles E, Freydier R, Casiot C, Viers J, Chmeleff J, Elbaz-Poulichet F. 2015. Antimony isotopic composition in river waters affected by ancient mining activity. Talanta, 144: 851-861
    Rouxel O, Ludden J, Fouquet Y. 2003. Antimony isotope variations in natural systems and implications for their use as geochemical tracers. Chemical Geology, 200(1-2): 25-40
    Santos S, Machado R, Correia M J N, Carvalho J R. 2004. Treatment of acid mining waters. Minerals Engineering, 17(2): 225-232
    Shrivas K, Agrawal K, Harmukh N. 2008. On-site spectrophotometric determination of antimony in water, soil and dust samples of Central India. Journal of Hazardous Materials, 155(1-2): 173-178
    Tanimizu M, Araki Y, Asaoka S, Takahashi Y. 2011. Determination of natural isotopic variation in antimony using inductively coupled plasma mass spectrometry for an uncertainty estimation of the standard atomic weight of antimony. Geochemical Journal, 45(1): 27-32
    Wachsmann M, Heumann K G. 1991. Negative thermal ionization mass spectrometry of main group elements: Part 1. 5th group: Phosphorus, arsenic and antimony. International Journal of Mass Spectrometry and Ion Processes, 108(1): 75-86
    Wehmeier S, Ellam R, Feldmann J. 2003. Isotope ratio determination of antimony from the transient signal of trimethylstibine by GC-MC-ICP-MS and GC-ICP-TOF-MS. Journal of Analytical Atomic Spectrometry, 18(9): 1001-1007
    Wieser M E, De Laeter J R, Varner M D. 2007. Isotope fractionation studies of molybdenum. International Journal of Mass Spectrometry, 265(1): 40-48
    Yu M Q, Tian W, Sun D W, Shen W B, Wang G P, Xu N. 2001. Systematic studies on adsorption of 11 trace heavy metals on thiol cotton fiber. Analytica Chimica Acta, 428(2): 209-218
    Yu M Q, Sun D W, Tian W, Wang G P, Shen W B, Xu N. 2002. Systematic studies on adsorption of trace elements Pt, Pd, Au, Se, Te, As, Hg, Sb on thiol cotton fiber. Analytica Chimica Acta, 456(1): 147-155
    Zhang L S, Combs S M. 1996. Using the installed spray chamber as a gas-liquid separator for the determination of germanium, arsenic, selenium, tin, antimony, tellurium and bismuth by hydride generation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 11(11): 1043-1048
    Zhu J M, Johnson T M, Clark S K, Zhu X K. 2008. High precision measurement of selenium isotopic composition by hydride generation multiple collector inductively coupled plasma mass spectrometry with a 74Se-77Se double spike. Chinese Journal of Analytical Chemistry, 36(10): 1385-1390
    Zhu J M, Johnson T M, Clark S K, Zhu X K, Wang X L. 2014. Selenium redox cycling during weathering of Se-rich shales: A selenium isotope study. Geochimica et Cosmochimica Acta, 126: 228-249
    丛志远, 赵峰华. 2003. 酸性矿山废水研究的现状及展望. 中国矿业, (3): 15-18
    党永锋, 赵彦龙, 邓锐, 梁永津. 2016. 都柳江重金属污染现状调查及来源分析. 广东微量元素科学, 23(6): 12-19
    何孟常, 季海冰, 赵承易, 谢军, 吴宪明, 李志峰. 2002. 锑矿区土壤和植物中重金属污染初探. 北京师范大学学报(自然科学版), 38(3): 417-420
    廖自基. 1992. 微量元素的环境化学及生物效应. 北京: 中国环境科学出版社
    孟郁苗, 胡瑞忠, 高剑峰, 毕献武, 黄小文. 2016. 锑的地球化学行为以及锑同位素研究进展. 岩矿测试, 35(4): 339-348
    宁增平, 肖唐付. 2007. 锑的表生地球化学行为与环境危害效应. 地球与环境, 35(2): 176-182
    秦海波, 朱建明, 李社红, 王明国. 2010. 高压密闭罐溶样-氢化物原子荧光法测定环境样品中的砷. 矿物学报, 30(3): 398-402
    谭德灿, 朱建明, 王静, 陶发祥, 曾理. 2016. 同位素双稀释剂法的原理与应用Ⅰ: 原理部分. 矿物岩石地球化学通报, 35(1): 138-145
    王成彦, 邱定蕃, 江培海. 2002. 国内锑冶金技术现状及进展. 有色金属(冶炼部分), (5): 6-10
    赵天从. 1987. 锑. 北京: 冶金工业出版社
    周建伟, 温冰, 周爱国, 刘存富, 李小倩. 2017. 环境中锑污染及锑同位素示踪研究进展. 自然杂志, 39(2): 120-130
    朱静, 郭建阳, 王立英, 潘响亮, 符志友, 廖海清, 吴丰昌. 2010. 锑的环境地球化学研究进展概述. 地球与环境, 38(1): 109-116
    朱祥坤, 王跃, 闫斌, 李津, 董爱国, 李志红, 孙剑. 2013. 非传统稳定同位素地球化学的创建与发展. 矿物岩石地球化学通报, 32(6): 651-688

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700