阴极界面修饰层改善平面p-i-n型钙钛矿太阳能电池的光伏性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cathode Buffer Layer for Improving Photovoltaic Performance of Planar p-i-n Perovskite Solar Cells
  • 作者:刘晓东 ; 李永舫
  • 英文作者:LIU Xiao-dong;LI Yong-fang;Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University;Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences;
  • 关键词:平面p-i-n型钙钛矿太阳能电池 ; 阴极界面修饰 ; 效率和稳定性 ; 有机/无机杂化金属卤化物钙钛矿半导体材料
  • 英文关键词:planar p-i-n perovskite solar cells;;cathode buffer layers;;efficiency and stability;;organic/inorganic hybrid metal halide perovskite semiconductor materials
  • 中文刊名:DHXX
  • 英文刊名:Journal of Electrochemistry
  • 机构:苏州大学材料与化学化工学部先进光电材料重点实验室;中国科学院化学研究所有机固体实验室;
  • 出版日期:2016-09-01 08:33
  • 出版单位:电化学
  • 年:2016
  • 期:v.22;No.96
  • 基金:国家自然科学基金项目(No.91333204;No.91433117)资助
  • 语种:中文;
  • 页:DHXX201604002
  • 页数:17
  • CN:04
  • ISSN:35-1172/O6
  • 分类号:6-22
摘要
有机/无机杂化金属卤化物钙钛矿半导体材料结合了有机材料良好的溶液可加工性以及无机材料优越的光电特性,近几年受到了热捧,成为太阳能电池领域一颗耀眼的明星.伴随着钙钛矿薄膜结晶过程和形貌的优化、器件结构的改进以及电极界面材料的开发,这类有机/无机杂化金属卤化物钙钛矿太阳能电池的光电转换效率从最初的3.8%迅速提高到目前最高的22.1%.其中界面工程在提升器件性能上发挥着极其重要的作用.本文总结了平面p-i-n型钙钛矿太阳能电池中阴极界面修饰层(CBL)的研究进展.CBL从材料上讲可分为无机金属氧化物、金属或金属盐以及有机材料,从构成上讲可分为单层CBL、双层CBLs以及共混型CBL.本文对这些类型的CBL分别给予详细的介绍.最后,我们归纳出CBL在改善器件效率和稳定性上所起的作用以及理想CBL所应满足的要求,希望能为以后阴极界面修饰材料的设计提供一定的借鉴.
        Organic/inorganic hybrid metal halide perovskite semiconductor materials have drawn great attention for the application in solar cells in recent years because of their combined superior photoelectrical properties of inorganic semiconductors(with high dielectric constant and high charge carriers mobility) and organic semiconductors(with good solution processability and high absorbance). The power conversion efficiency(PCE) of the organometal halide perovskite solar cells(pero-SCs) based on CH3NH3 Pb I3has been increased dramatically in a few years from 3.8% to a certified 22.1%, primarily owing to the development of new interfacial materials, careful optimization of morphology and perovskite crystallization processes of the active layers and the device architecture. Among the optimization strategies, interface engineering plays a vital role in improving photovoltaic performance of the pero-SCs.Organometal halide perovskite material CH3NH3 Pb I3was first used in solar cells in 2009 as sensitizer in dye-sensitized solar cells with a PCE of 3.81%, and then the PCE was improved to 6.54% in 2011. However, the stability of the solar cells with a liquid electrolyte is very poor due to the easy decomposition of the perovskite in the liquid electrolyte. In 2012, spiro-Me OTAD was used as a solid hole transporting layer on the perovskite layer instead of liquid electrolyte, and all solid state pero-SCs were fabricated.The solid state pero-SCs based on mesoporous TiO 2electrode showed higher PCE of 9.7% with much improved stability. Later, the planar structured pero-SCs were developed with the dense planar electrode as a cathode. Now the planar structured pero-SCs can be classified into planar n-i-p pero-SCs with a cathode buffer layer(CBL) on a transparent electrode and p-i-n pero-SCs with an anode buffer layer on a transparent electrode.In this review article, we summarized the latest development of CBLs for highly efficient and stable planar p-i-n pero-SCs. The CBL materials can be divided into inorganic metal oxides, metals or metal salts, and n-type organic semiconductor materials according to the types of materials. And the types of the CBLs can be classified into single CBL, double CBLs, and hybrid CBL according to the CBL composition. The effects of the CBLs on the photovoltaic performance and device stability of the pero-SCs were reviewed systematically. Finally, we summarized the effects of CBL on the improvements of device efficiency and stability as well as the requirements for an ideal CBL. We hope that the properties and requirements of the ideal CBLs we summarized in this article will provide guidance for the future molecular design of cathode interfacial materials.
引文
[1]Zhou H,Zhang Y,Mai C K,et al.Polymer homo-tandem solar cells with best efficiency of 11.3%[J].Advanced Materials,2015,27(10):1767-1773.
    [2]Liu Y,Chen C C,Hong Z,et al.Solution-processed smallmolecule solar cells:Breaking the 10%power conversion efficiency[J].Scientific Reports,2013,3:3356.
    [3]Zhao W C,Qian D Q,Zhang S Q,et al.Fullerene-free polymer solar cells with over 11%efficiency and excellent thermal stability[J].Advanced Materials,2016,DIO:10.1002/adma.201600281.
    [4]Xue Q F,Sun C,Hu Z C,et al.Recent advances in perovskite solar cells:Morphology control and interfacial engineering[J].Acta Chimica Sinica,2015,73(3):179-192.
    [5]Liang P W,Liao C Y,Chueh C C,et al.Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells[J].Advanced Materials,2014,26(22):3748-3754.
    [6]Yu H,Liu X D,Xia Y J,et al.Room-temperature mixedsolvent-vapor annealing for high performance perovskite solar cells[J].Journal of Materials Chemistry A,2016,4(1):321-326.
    [7]Zhou Y Y,Yang M J,Wu W W,et al.Room-temperature crystallization of hybrid-perovskite thin films via solvent-solvent extraction for high-performance solar cells[J].Journal of Materials Chemistry A,2015,3(15):8178-8184.
    [8]Zhou Z M,Wang Z W,Zhou Y Y,et al.Methylamine-gasinduced defect-healing behavior of CH3NH3Pb I3thin films for perovskite solar cells[J].Angewandte Chemie-International Edition,2015,54(33):9705-9709.
    [9]Eperon G E,Burlakov V M,Docampo P,et al.Morphological control for high performance,solution-processed planar heterojunction perovskite solar cells[J].Advanced Functional Materials,2014,24(1):151-157.
    [10]Jeon N J,Noh J H,Kim Y C,et al.Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J].Nature Materials,2014,13(9):897-903.
    [11]Wang F Z,Tan Z A,Dai S Y,et al.Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells[J].Acta Physica Sinica,2015,64(3):038401.
    [12]Snaith H J.Perovskites:The emergence of a new era for low-cost,high-efficiency solar cells[J].The Journal of Physical Chemistry Letters,2013,4(21):3623-3630.
    [13]He M,Zheng D J,Wang M Y,et al.High efficiency perovskite solar cells:From complex nanostructure to planar heterojunction[J].Journal of Materials Chemistry A,2014,2(17):5994-6003.
    [14]Shi J J,Xu X,Li D M,et al.Interfaces in perovskite solar cells[J].Small,2015,11(21):2472-2486.
    [15]Zhou H P,Chen Q,Li G,et al.Photovoltaics.Interface engineering of highly efficient perovskite solar cells[J].Science,2014,345(6196):542-546.
    [16]Seo J,Park S,Kim Y C,et al.Benefits of very thin PCBM and Li F layers for solution-processed p-i-n perovskite solar cells[J].Energy&Environmental Science,2014,7(8):2642-2646.
    [17]Chueh C C,Li C Z,Jen A K Y.Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells[J].Energy&Environmental Science,2015,8(4):1160-1189.
    [18]National renewable enegry laboratory[EB/OL].http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
    [19]Tiep N H,Ku Z,Fan H J.Recent advances in improving the stability of perovskite solar cells[J].Advanced Energy Materials,2016,6(3):1501420.
    [20]Sun S,Salim T,Mathews N,et al.The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells[J].Energy&Environmental Science,2014,7(1):399-407.
    [21]Liu F,Zhu J,Wei J F,et al.Numerical simulation:Toward the design of high-efficiency planar perovskite solar cells[J].Applied Physics Letters,2014,104(25):253508.
    [22]Sha W E I,Ren X G,Chen L J,et al.The efficiency limit of CH3NH3Pb I3perovskite solar cells[J].Applied Physics Letters,2015,106(22):221104.
    [23]Giorgi G,Fujisawa J,Segawa H,et al.Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite:A density functional analysis[J].The Journal of Physical Chemistry Letters,2013,4(24):4213-4216.
    [24]Xing G C,Mathews N,Sun S Y,et al.Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3Pb I3[J].Science,2013,342(6156):344-347.
    [25]Stranks S D,Eperon G E,Grancini G,et al.Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J].Science,2013,342(6156):341-344.
    [26]Lin Q,Armin A,Nagiri R C R,et al.Electro-optics of perovskite solar cells[J].Nature Photonics,2014,9(2):106-112.
    [27]Kojima A,Teshima K,Shirai Y,et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].Journal of the American Chemical Society,2009,131(17):6050-6051.
    [28]Im J H,Lee C R,Lee J W,et al.6.5%efficient perovskite quantum-dot-sensitized solar cell[J].Nanoscale,2011,3(10):4088-4093.
    [29]Kim H S,Lee C R,Im J H,et al.Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J].Scientific Reports,2012,2:591.
    [30]Lee M M,Teuscher J,Miyasaka T,et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J].Science,2012,338(6107):643-647.
    [31]Burschka J,Pellet N,Moon S J,et al.Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J].Nature,2013,499(7458):316-319.
    [32]Im J H,Jang I H,Pellet N,et al.Growth of CH3NH3Pb I3cuboids with controlled size for high-efficiency perovskite solar cells[J].Nature Nanotechnology,2014,9(11):927-932.
    [33]Ahn N,Son D Y,Jang I H,et al.Highly reproducible perovskite solar cells with average efficiency of 18.3%and best efficiency of 19.7%fabricated via lewis base adduct of lead(ii)iodide[J].Journal of the American Chemical Society,2015,137(27):8696-8699.
    [34]Jeon N J,Noh J H,Yang W S,et al.Compositional engineering of perovskite materials for high-performance solar cells[J].Nature,2015,517(7535):476-480.
    [35]Yang W S,Noh J H,Jeon N J,et al.High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J].Science,2015,348(6240):1234-1237.
    [36]Heo J H,Im S H,Noh J H,et al.Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors[J].Nature Photonics,2013,7(6):486-491.
    [37]Rong Y,Mei A,Liu L,et al.All-solid-state mesoscopic solar cells:From dye-sensitized to perovskite[J].Acta Chimica Sinica,2015,73(3):237-251.
    [38]Etgar L,Gao P,Xue Z,et al.Mesoscopic CH3NH3Pb I3/Ti O2heterojunction solar cells[J].Journal of the American Chemical Society,2012,134(42):17396-17399.
    [39]Laban W A,Etgar L.Depleted hole conductor-free lead halide iodide heterojunction solar cells[J].Energy&Environmental Science,2013,6(11):3249-3253.
    [40]Aharon S,Gamliel S,El Cohen B,et al.Depletion region effect of highly efficient hole conductor free CH3NH3Pb I3perovskite solar cells[J].Physical Chemistry Chemical Physics,2014,16(22):10512-10518.
    [41]Mei A Y,Li X,Liu L F,et al.A hole-conductor-free,fully printable mesoscopic perovskite solar cell with high stability[J].Science,2014,345(6194):295-298.
    [42]Liu M Z,Johnston M B,Snaith H J.Efficient planar heterojunction perovskite solar cells by vapour deposition[J].Nature,2013,501(7467):395-398.
    [43]Xiao Z G,Yuan Y B,Shao Y C,et al.Giant switchable photovoltaic effect in organometal trihalide perovskite devices[J].Nature Materials,2015,14(2):193-198.
    [44]De Bastiani M,Dell'Erba G,Gandini M,et al.Ion migration and the role of preconditioning cycles in the stabilization of the J-V characteristics of inverted hybrid perovskite solar cells[J].Advanced Energy Materials,2016,6(2):1501453.
    [45]Snaith H J,Abate A,Ball J M,et al.Anomalous hysteresis in perovskite solar cells[J].The Journal of Physical Chemistry Letters,2014,5(9):1511-1515.
    [46]Shao Y C,Xiao Z G,Bi C,et al.Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3Pb I3planar heterojunction solar cells[J].Nature Communications,2014,5:5784.
    [47]Wang Q,Shao Y C,Dong Q F,et al.Large fill-factor bilayer iodine perovskite solar cells fabricated by a lowtemperature solution-process[J].Energy&Environmental Science,2014,7(7):2359-2365.
    [48]Xu J,Buin A,Ip A H,et al.Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes[J].Nature Communications,2015,6:7081.
    [49]Wei J,Zhao Y C,Li H,et al.Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells[J].The Journal of Physical Chemistry Letters,2014,5(21):3937-3945.
    [50]Bi C,Wang Q,Shao Y C,et al.Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells[J].Nature Communications,2015,6:7747.
    [51]Wu C G,Chiang C H,Tseng Z L,et al.High efficiency stable inverted perovskite solar cells without current hysteresis[J].Energy&Environmental Science,2015,8(9):2725-2733.
    [52]Wang K C,Jeng J Y,Shen P S,et al.P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells[J].Scientific Reports,2014,4:4756.
    [53]Zhu Z L,Bai Y,Zhang T,et al.High-performance holeextraction layer of sol-gel-processed nio nanocrystals for inverted planar perovskite solar cells[J].Angewandte Chemie-International Edition,2014,53(46):12571-12575.
    [54]Chen W,Wu Y Z,Liu J,et al.Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells[J].Energy&Environmental Science,2015,8(2):629-640.
    [55]Niu G D,Guo X D,Wang L D.Review of recent progress in chemical stability of perovskite solar cells[J].Journal of Materials Chemistry A,2015,3(17):8970-8980.
    [56]Jeng J Y,Chiang Y F,Lee M H,et al.CH3NH3Pb I3perovskite/fullerene planar-heterojunction hybrid solar cells[J].Advanced Materials,2013,25(27):3727-3732.
    [57]Liang P W,Chueh C C,Williams S T,et al.Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells[J].Advanced Energy Materials,2015,5(10):1402321.
    [58]Bao Q Y,Liu X J,Braun S,et al.Oxygen-and water-based degradation in[6,6]-phenyl-C61-butyric acid methyl ester(PCBM)films[J].Advanced Energy Materials,2014,4(6):1301272.
    [59]Docampo P,Ball J M,Darwich M,et al.Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates[J].Nature Communications,2013,4:2761.
    [60]Bai S,Wu Z W,Wu X J,et al.High-performance planar heterojunction perovskite solar cells:Preserving long charge carrier diffusion lengths and interfacial engineering[J].Nano Research,2014,7(12):1749-1758.
    [61]Zhang L Q,Zhang X W,Yin Z G,et al.Highly efficient and stable planar heterojunction perovskite solar cells via a low temperature solution process[J].Journal of Materials Chemistry A,2015,3(23):12133-12138.
    [62]You J B,Meng L,Song T B,et al.Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J].Nature Nanotechnology,2016,11(1):75-81.
    [63]Chen W,Wu Y Z,Yue Y F,et al.Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers[J].Science,2015,350(6263):944-948.
    [64]Yang G,Tao H,Qin P L,et al.Recent progress in electron transport layers for efficient perovskite solar cells[J].Journal of Materials Chemistry A,2016,4(11):3970-3990.
    [65]Chiang C H,Tseng Z L,Wu C G.Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a(2/1)-step spin-coating process[J].Journal of Materials Chemistry A,2014,2(38):15897-15903.
    [66]Chen Y H,Chen T,Dai L M.Layer-by-layer growth of CH3NH3Pb I3-xClxfor highly efficient planar heterojunction perovskite solar cells[J].Advanced Materials,2015,27(6):1053-1059.
    [67]Liu X D,Yu H,Yan L,et al.Triple cathode buffer layers composed of PCBM,C60,and Li F for high-performance planar perovskite solar cells[J].Acs Applied Materials&Interfaces,2015,7(11):6230-6237.
    [68]Liu X D,Jiao W X,Lei M,et al.Crown-ether functionalized fullerene as a solution-processable cathode buffer layer for high performance perovskite and polymer solar cells[J].Journal of Materials Chemistry A,2015,3(17):9278-9284.
    [69]Liu C,Wang K,Yi C,et al.Efficient perovskite hybrid photovoltaics via alcohol-vapor annealing treatment[J].Advanced Functional Materials,2016,26(1):101-110.
    [70]Xue Q F,Hu Z C,Liu J,et al.Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer[J].Journal of Materials Chemistry A,2014,2(46):19598-19603.
    [71]Min J,Zhang Z G,Hou Y,et al.Interface engineering of perovskite hybrid solar cells with solution-processed perylene-diimide heterojunctions toward high performance[J].Chemistry of Materials,2015,27(1):227-234.
    [72]Zhang Z G,Qi B,Jin Z,et al.Perylene diimides:A thickness-insensitive cathode interlayer for high performance polymer solar cells[J].Energy&Environmental Science,2014,7(6):1966-1973.
    [73]Qian M,Li M,Shi X B,et al.Planar perovskite solar cells with 15.75%power conversion efficiency by cathode and anode interfacial modification[J].Journal of Materials Chemistry A,2015,3(25):13533-13539.
    [74]Li C,Wang F Z,Xu J,et al.Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination[J].Nanoscale,2015,7(21):9771-9778.
    [75]Chen C C,Bae S H,Chang W H,et al.Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature,full solution process[J].Materials Horizons,2015,2(2):203-211.
    [76]Chang C Y,Huang W K,Wu J L,et al.Room-temperature solution-processed n-doped zirconium oxide cathode buffer layer for efficient and stable organic and hybrid perovskite solar cells[J].Chemistry of Materials,2016,28(1):242-251.
    [77]Chang C Y,Chang Y C,Huang W K,et al.Enhanced performance and stability of semitransparent perovskite solar cells using solution-processed thiol-functionalized cationic surfactant as cathode buffer layer[J].Chemistry of Materials,2015,27(20):7119-7127.
    [78]Jiang L L,Cong S,Lou Y H,et al.Interface engineering toward enhanced efficiency of planar perovskite solar cells[J].Journal of Materials Chemistry A,2016,4(1):217-222.
    [79]Chen C W,Kang H W,Hsiao S Y,et al.Efficient and uniform planar-type perovskite solar cells by simple se quential vacuum deposition[J].Advanced Materials,2014,26(38):6647-6652.
    [80]Liu X D,Lei M,Zhou Y,et al.High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and Li F as double cathode buffer layers[J].Applied Physics Letters,2015,107(6):063901.
    [81]Sun K,Chang J J,Isikgor F H,et al.Efficiency enhancement of planar perovskite solar cells by adding zwitteri on/Li F double interlayers for electron collection[J].Nanoscale,2015,7(3):896-900.
    [82]Zhu Z,Chueh C C,Lin F,et al.Enhanced ambient stability of efficient perovskite solar cells by employing a modi

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700