生物组织电特性在体测量微创电极的设计及应用研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Micro-Invasive Electrode Applied to Bio-Tissue’s Electrical Properties Measuring In-Vivo
  • 作者:张岩 ; 曹爽 ; 张顺起 ; 马任 ; 殷涛 ; 刘志朋
  • 英文作者:Zhang Yan;Cao Shuang;Zhang Shunqi;Ma Ren;Yin Tao;Liu Zhipeng;Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College;School of Physics and Electronic Engineering, Tai Shan University;
  • 关键词:电特性 ; 微创电极 ; 肿瘤组织 ; 在体 ; 测量
  • 英文关键词:electrical properties;;micro-invasive electrode;;tumor tissue;;in vivo;;measure
  • 中文刊名:ZSWY
  • 英文刊名:Chinese Journal of Biomedical Engineering
  • 机构:中国医学科学院北京协和医学院生物医学工程研究所;泰山学院物理与电子工程学院;
  • 出版日期:2018-10-20
  • 出版单位:中国生物医学工程学报
  • 年:2018
  • 期:v.37;No.180
  • 基金:国家自然科学基金(81172004);; 中国医学科学院医学与健康科技创新工程(2017-I2M-3-020);; 天津市自然科学基金重点项目(17JCZDJC32400)
  • 语种:中文;
  • 页:ZSWY201805008
  • 页数:8
  • CN:05
  • ISSN:11-2057/R
  • 分类号:59-66
摘要
根据平行板电容法测量原理,应用矩量法计算极板电荷分布,设计一种用于在体测量的微创探针电极,夹持组织的体积仅有0.8 mm~3。应用有限元法仿真研究微创电极中电场的分布,以证明微创电极能够有效屏蔽边缘效应。按照肿瘤生长时间将裸鼠分成3组(7、14、21 d),每组10只。在0.5~5 MHz频率范围内,分别测量在体和离体条件下,3组裸鼠的乳腺癌肿瘤组织和正常组织的电阻抗和阻抗角,计算得到相应的电特性参数(电导率和介电常数);并且在1、3、5 MHz这3个频率点,在体测量肿瘤组织、肌肉组织和脂肪组织的电特性参数。结果表明,在0.5~5 MHz频率范围内,在体肿瘤的电导率和介电常数随肿瘤生长时间的增长而变大,在体肿瘤与离体肿瘤的电特性参数有显著差异;在所测的3个频率点中,肿瘤组织与肌肉组织和脂肪组织的电特性参数分别存在显著差异。所设计的微创探针电极可实现微创在体测量的目标。
        According to the principle of parallel plate capacitance method, the charge distribution of the electrode was calculated by the method of moment and a minimally invasive probe electrode was designed for in vivo measurement in this study. The volume of tissue gripped by the probe was only 0.8 mm~3. The electric field distribution in the miniature electrode was simulated by the finite element method. It was proved that the minimally invasive electrode can effectively shield the edge effect. Nude mice were divided into 3 groups according to the time of tumor inoculation(7, 14, 21 d), 10 mice in each group. Within the frequency range of 0.5-5 MHz, the electrical impedance and impedance angles of the tumor tissue and normal tissue of mice were measured in vivo and in vitro, and the corresponding electrical properties(conductivity and permittivity) were calculated. The electrical properties of tumor tissue, muscle tissue and adipose tissue were measured in vivo at 1, 3 and 5 MHz. The results showed that the conductivity and permittivity of tumor in vivo increased with the tumor growth in the frequency range of 0.5-5 MHz. There are significant differences in electrical properties between in vivo and in vitro tumor. At the three frequencies measured, there are significant differences in electrical properties between tumor tissue, muscle tissue and adipose tissue. The designed minimally invasive electrode achieves the purpose of minimally invasive in vivo measurement.
引文
[1] Cole KS. Electric impedance of suspensions of spheres [J]. Journal of General Physiology, 1928, 12(1): 29-36.
    [2] 杨胜萍, 张青云. 七种恶性肿瘤血清离子检测水平分析[J]. 中国现代医学杂志, 2014, 24(27): 9-12.
    [3] Fear EC, Hagness SC, Meaney PM, et al. Enhancing breast tumor detection with near-field imaging[J]. IEEE Microwave Magazine, 2002, 3(1): 48-56.
    [4] Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: 1. Literature survey Phys[J]. Med Biol, 1996, 41: 2231-2249.
    [5] Gabriel S, Gabriel C, Lau RW. The dielectric properties of biological tissues.2.measurements in the frequency range 10Hz to 20GHz [J]. Physics in Medicine & Biology, 1996, 41(11): 2251-2269.
    [6] Norman K, Stobus N, Pirlich M, et al. Bioelectrical phase angle and impedance vector analysis--clinical relevance and applicability of impedance parameters[J]. Clinical Nutrition, 2012, 31(6): 854-861.
    [7] Chan JK, Sun L, Yang XJ, et al. Electrical impedance characterization of normal and cancerous human hepatic tissue[J]. Physiological Measurement, 2010, 31(7): 995-1009.
    [8] Haemmerich D, Schutt DJ, Wright AW, et al. Electrical conductivity measurement of excised human metastatic liver tumours before and after thermal ablation[J]. Physiological Measurement, 2009, 30(5): 459-466.
    [9] Skourou C, Hoopes PJ, Strawbridge RR, et al. Feasibility studies of electrical impedance spectroscopy for early tumor detection in rats[J]. Physiological Measurement, 2004, 25(1): 335-346.
    [10] Alborova IL, Bonello J, Farrugia L, et al. A study of the dielectric properties of biological tissues: Ex-vivo vs preserved samples[C]// Progress in Electromagnetics Research Symposium-Spring (PIERS) St Petersburg: IEEE, 2017: 2373-2377.
    [11] Hesabgar SM, Sadeghi-Naini A, Czarnota G, et al. Dielectric properties of the normal and malignant breast tissues in xenograft mice at low frequencies (100Hz-1MHz)[J]. Measurement, 2017, 105: 56-65.
    [12] Kahraman A, Hilsenbeck J, Nyga M, et al. Bioelectrical impedance analysis in clinical practice: implications for hepatitis C therapy BIA and hepatitis C[J]. Virology Journal, 2010, 7(1): 1-8.
    [13] 付峰, 臧益民, 董秀珍. 部分离体动物组织复阻抗频率特性(100 Hz~10 MHz)测量系统及初步测量结果[J]. 医学争鸣, 1999, 20(3): 220-222.
    [14] Hall SK, Ooi EH, Payne SJ. Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation[J]. International Journal of Hyperthermia, 2015, 31(5): 538-550.
    [15] Cho J, Yoon J, Cho S, et al. In-vivo measurements of the dielectric properties of breast carcinoma xenografted on nude mice[J]. International Journal of Cancer, 2006, 119(3): 593-598.
    [16] Sanchez B, Vandersteen G, Martin I, et al. In vivo electrical bioimpedance characterization of human lung tissue during the bronchoscopy procedure. A feasibility study[J]. Medical Engineering & Physics, 2013, 35(7): 949-957.
    [17] Carter RG. Accuracy of microwave cavity perturbation measurements[J]. IEEE Transactions on Microwave Theory & Techniques, 2001, 49(5): 918-923.
    [18] 张亮, 董秀珍, 刘培国, 等. 1MHz-120MHz生物活性组织介电特性测量与分析方法[J]. 中国医学物理学杂志, 2015, 32(1): 98-103.
    [19] Hanson GW, Grimm JM, Nyquist DP. An improved de-embedding technique for the measurement of the complex constitutive parameters of materials using a stripline field applicator[J]. IEEE Transactions on Instrumentation & Measurement, 1993, 42(3): 740-745.
    [20] 许守培, 闵伟杰, 沈林勇, 等. 基于体外阻抗测量的恶性胶质瘤介电特性[J]. 北京生物医学工程, 2017(2): 207-214.
    [21] 王长清. 现代计算电磁学基础[M]. 北京:北京大学出版社, 2005:116-132.
    [22] 赵凯华. 新概念物理教程:电磁学[M]. 北京:高等教育出版社, 2006:11-29.
    [23] Chew WC, Jin JM, Michielssen E, et al. Fast efficient algorithms in computational electromagnetics[J]. IEEE AESS Systems Magazine, 2001, 17(3): 41-42.
    [24] 王安玲, 王安轩, 刘福平, 等. 医用针状电极电流场边界元计算方法及纯水实验研究[J]. 中国生物医学工程学报, 2007, 26(2): 182-187.
    [25] 马青, 洲崎敏伸. 家兔红细胞阻抗谱的实验和等效电路拟合研究[J]. 中国生物医学工程学报, 2006, 25(5): 566-570.
    [26] 马青, 何学影, 张红波. 交流阻抗方法研究大鼠正常血细胞电生理特性[J]. 中国运动医学杂志, 2007, 26(1): 93-95.
    [27] 付峰, 臧益民, 董秀珍, 等. 生物组织复电阻抗频谱测量及电阻抗断层成像系统的研究[J]. 心脏杂志, 2000, 12(4): 298-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700