30cm氙离子推力器磁场特性分析与优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Magnetic field characteristics analysis and optimization design of 30cm xenon ion thruster
  • 作者:胡竟 ; 王亮 ; 张天平 ; 江豪成
  • 英文作者:HU Jing;WANG Liang;ZHANG Tianping;JIANG Haocheng;National Key Laboratory of Science and Technology on Vacuum Technology and Physics Laboratory,Lanzhou Institute of Space Technology and Physics;
  • 关键词:离子推力器 ; 电磁体 ; 永磁体 ; 磁路模型 ; 优化设计
  • 英文关键词:ion thruster;;electromagnet;;permanent magnet;;magnetic circuit model;;optimization design
  • 中文刊名:ZGKJ
  • 英文刊名:Chinese Space Science and Technology
  • 机构:兰州空间技术物理研究所真空技术与物理国家级重点实验室;
  • 出版日期:2017-09-24 16:01
  • 出版单位:中国空间科学技术
  • 年:2017
  • 期:v.37;No.222
  • 基金:装备预先研究项目基金(414230605XX);; 国家自然科学基金(61601210)
  • 语种:中文;
  • 页:ZGKJ201705010
  • 页数:8
  • CN:05
  • ISSN:11-1859/V
  • 分类号:64-71
摘要
放电室磁场设计直接影响放电室的放电稳定性及推力器在轨工作寿命,针对多种工作模式下30cm氙离子推力器磁场设计的复杂性问题,对推力器电磁体磁场向永磁体磁场转换中放电室的磁场特性进行了研究,并对永磁体磁场的关键参数进行优化设计。建立30cm氙离子推力器放电室磁场转换的磁路模型,运用有限元分析理论,利用实际工程数据验证磁路模型计算结果的正确性与方法的可行性。在此基础上,分析获得给定磁路构型下产生要求磁感应强度的永磁体关键尺寸。以放电室工作阳极震荡电压、减速栅极电流、加速栅极电流和磁路系统质量为目标,采用多目标粒子群优化算法,对永磁体的关键参数进行优化,得到30cm氙离子推力器设计性能目标下的磁路构型最优结果。本研究可为高效、稳定工作的离子推力器磁路设计及优化提供方法。
        The magnetic field design directly influences the stability and the in-orbit life of the discharge chamber.Aiming at the complexity of the 30 cm xenon ion thruster magnetic field design in variety of operating modes,the magnetic circuit characteristics was analyzed during the conversion between the electromagnet and permanent magnet.And the key parameters of the permanent magnet were optimized.The magnetic circuit model of the 30 cm xenon ion thruster was established,combined with the finite element method,the effectiveness and feasiblity of this method was validated by compared with the job sitedata.Based on this model,the key parameters of the permanent magnet which could produce requested magnetic induction intensity were obtained.Then the key parameters of the permanent magnet were optimized by using multiobjective particle swarm optimization(MPSO)algorithm, with the goal of the minimum anode shock voltage,accelerator grid current,decelerator grid current and magnetic circuit system weight system,and the relevant optimal result of magnetic circuit configuration for 30 cm xenon ion thruster was observed.Above research will certainly provide a method for the design and optimization of the ion thruster.
引文
[1]胡帼杰,李健,刘百麟.地球静止轨道LIPS-300离子电推力器热设计与优化[J].中国空间科学技术,2016,36(1):85-93.HU G J,LI J,LIU B L.Thermal design and optimization of LIPS-300ion thruster in geosynchronous orbit[J].Chinese Space Science and Technology,2016,36(1):85-93(in Chinese).
    [2]张天平,田华兵,孙运奎.离子推进系统用于GEO卫星南北位保使命的能力与效益[J].真空与低温,2010,16(2):72-77.ZHANG T P,TIAN H B,SUN Y K.Capability and benefit of the LIPS-200 system for NSSK mission of GEO satellite[J].Vacuum&Cryogenics,2010,16(2):72-77(in Chinese).
    [3]胡竟,江豪成,王亮,等.阴极挡板对30cm氙离子推力器性能影响的研究[J].真空与低温,2015,21(2):103-106.HU J,JIANG H C,WANG L,et al.Experimental research of performances 30cm xenon ion thruster subjected cathode baffle[J].Vacuum&Cryogenics,2015,21(2):103-106(in Chinese).
    [4]陈娟娟,张天平,贾艳辉,等.LIPS-300离子推力器加速栅电压的优化设计[J].中国空间科学技术,2015,35(2):70-76.CHEN J J,ZHANG T P,JIA Y H,et al.Optimization of LIPS-300 ion thruster accelerator voltage[J].Chinese Space Science and Technology,2015,35(2):70-76(in Chinese).
    [5]王雨玮,任军学,吉林桔,等.放电电压和屏栅电压对离子推力器性能的影响[J].中国空间科学技术,2016,36(1):77-84.WANG Y W,REN J X,JI L J,et al.Effects of discharge voltage and screen grid voltage on performance of ion thruster[J].Chinese Space Science and Technology,201 6,36(1):77-84(in Chinese).
    [6]ZHANG T P,WANG X Y,JIANG H C.Initial flight test results of the LIPS-200 electric propulsion system on SJ-9A satellite[C]∥Proceedings of the 33rd International Electric Propulsion Conference,Washington DC,USA,2013.
    [7]JOSE G D A.European space agency(ESA)electric propulsion activities[C]∥Proceedings of the 34th International Electric Propulsion Conference,Kobe,Japan,2015.
    [8]WILLIAM G T,KUEI R C,EZEQUIEL S,et al.Performance evaluation of the XIPS 25-cm thruster for application to NASA discovery missions:AIAA-2006-4666[R].Reston:AIAA,2006.
    [9]POLK J E,KAKUDA R Y,ANDERSON J R,et al.Performance of the NSTAR ion propulsion system on the deep space one mission:AIAA-2001-0965[R].Reston:AIAA,2001.
    [10]DANIEL A H,ALEC D G.Discharge chamber plasma structure of a 30-cm NSTAR-type ion engine:AIAA-2004-3794[R].Reston:AIAA,2004.
    [11]SCOTT W B,MICHAEL J P.Development status of NEXT:NASA′S evolutionary xenon thruster[C]∥Proceedings of the 28th International Electric Propulsion Conference,Toulouse,France,2003.
    [12]MICHAEL J P,SCOTT W B B.NEXT ion propulsion system development status and performance:AIAA-2007-5199[R].Reston:AIAA,2007.
    [13]DAN M G,RICHARD E W,IRA K.Analytical ion thruster discharge performance model:AIAA-2006-4486[R].Reston:AIAA,2006.
    [14]ZHANG T P,YANG L,TIAN L C,et al.The electric propulsion progress in LIP-2015[C]∥Proceedings of the 34th International Electric Propulsion Conference,Kobe,Japan,2015.
    [15]DANIEL A H,ALEC D G.Discharge chamber plasma potential mapping of a 40-cm NEXT-type ion engine:AIAA-2005-4251[R].Reston:AIAA,2005.
    [16]孙雨施.直流磁系统的计算与分析(模型·算法·程序)[M].北京:国防工业出版社,1987:170-269.SUN Y S.The calculation and analysis of DC magnetic system(model·arithmetic·program)[M].Beijing:National Defence Industry Press,1987:170-269.
    [17]曾祥铭.表面式永磁推进电机的研究[D].武汉:华中科技大学,2007.ZENG X M.Research on surface permanent magnet propulsion electrical machines[D].Wuhan:Huazhong University of Science and Technology,2007(in Chinese).
    [18]CHRISTINA C,MICHAEL H W,SAM L.Thermal stability and the effectiveness of coatings for Sm-Co 2∶17 high-temperature magnets at temperatures up to550℃[J].IEEE Transactions on Magnetics,2004,40(4):2928-2930.
    [19]ZHANG T P,MENG W,GENG H,et al.7500-hour life test of the QM LIPS-200ion thruster[C]∥Proceedings of the 34th International Electric Propulsion Conference,Kobe,Japan,2015.
    [20]李莉,牛奔.粒子群优化算法[M].北京:冶金工业出版社,2009:25-33.LI L,NIU B.Particle swarm optimization[M].Beijing:Metallurgical Industry Press,2009:25-33.
    [21]夏昊,陈昌亚,王德禹.基于多目标粒子群算法的卫星结构动力学优化[J].上海交通大学学报,2015,49(9):1400-1403,1410.XIA H,CHEN C Y,WANG D Y.Dynamical optimization of satellite structure based on multiobjective particle swarm optimization algorithm[J].Journal of Shanghai Jiao Tong University,2015,49(9):1400-1403,1410(in Chinese).
    [22]王婷,夏广庆,兰聪超.粒子群算法求解不等质量库仑卫星编队最优构型[J].系统工程与电子技术,2016,38(2):305-313.WANG T,XIA G Q,LAN C C.Optimal static configuration of non-equal mass Coulomb formation satellites by PSO[J].Systems Engineering and Electronics,2016,38(2):305-313(in Chinese).
    [23]刘济民,侯志强,宋贵宝,等.乘波外形导弹弹道特性分析与优化设计[J].弹道学报,2010,22(4):19-22,35.LIU J M,HOU Z Q,SONG G B,et al.Trajectory characteristics analysis and optimization design of hypersonic waverider-based missile[J].Journal of Ballistics,2010,22(4):19-22,35(in Chinese).
    [24]王允良,李为吉.基于混合多目标粒子群算法的飞行器气动布局设计[J].航空学报,2008,29(5):1202-1206.WANG Y L,LI W J.Aerodynamic configuration design of aircraft with hybrid multi-objective particle swarm optimization[J].Acta Aeronautica Et Astronautica Sinica,2008,29(5):1202-1206(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700