考虑损耗的DAB变换器简化模型及线性化控制方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simplified Equivalent Circuit Model of DAB Converter and the Linearized Control Method with Considering Losses
  • 作者:李国文 ; 杭丽君 ; 钱语安 ; 童安平 ; 杨益平 ; 杨成林
  • 英文作者:LI Guowen;HANG Lijun;QIAN Yu'an;TONG Anping;YANG Yiping;YANG Chenglin;School of Automation,Hangzhou Dianzi University;Information Engineering School,Hangzhou Dianzi University;Key Laboratory of Control of Power Transmission and Conversion,Ministry of Education,Shanghai Jiao Tong University;Hangzhou Hongyi Technology Company Limited;Shenzhen Yingweiteng Power Co.,Ltd.;
  • 关键词:DAB变换器 ; 参与因子 ; 稳定性 ; 线性化控制方法 ; 等效电路
  • 英文关键词:dual active bridge converter;;participation factor;;stability;;linearization control method;;equivalent circuit
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:杭州电子科技大学自动化学院;杭州电子科技大学信息工程学院;电力传输与功率变换控制教育部重点实验室(上海交通大学);杭州弘易科技有限公司;深圳市英威腾电源有限公司;
  • 出版日期:2019-07-12
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.320
  • 基金:国家自然科学基金(51777049;51707051)~~
  • 语种:中文;
  • 页:GDYJ201907007
  • 页数:8
  • CN:07
  • ISSN:42-1239/TM
  • 分类号:65-72
摘要
变换器的数学建模对于设计性能优良的控制器提高其性能具有重要作用。为了分析双有源全桥变换器(DAB)的动态特性,首先利用参与因子分析方法定位出影响DAB变换器稳定性的主导状态变量,从而为模型化简提供了严格的数学基础。根据这一结论,从已有的二阶等效电路出发,通过消去非关键状态变量,得到了DAB变换器简化等效电路模型。该简化模型中考虑了损耗对变换器运行特性的影响,能给出系统稳定边界和主导特征根的解析形式,有利于实际应用中的稳定性判别和控制器设计。同时,所建立的简化等效电路能体现出DAB的非线性特性,在此基础上,针对性地提出了线性化控制方法。该线性化环节可以平抑变换器的非线性,从而增强DAB对于不同工况的适应能力。最后通过理论计算和硬件在环实验,分别验证了所提出的简化模型和线性化控制方法的有效性。
        Modeling of a converter is the prerequisite for controller design to improve the dynamic performance of power converter. Therefore, in order to investigate the dynamics of dual active bridge(DAB) converter, the participation factor is used to identify the state variables that are critical for the stability. On this basis, by neglecting the minor state variables, the previous second-order equivalent circuit of DAB converter can be simplified to provide an explicit model of DAB converter with considering the losses. The closed-form solutions of stability boundary and the major eigenvalues can, then, be derived for design purpose. Furthermore, the proposed model can reveal the DAB nonlinearity. Thereafter, a linearization control method is introduced to suppress the oscillations induced by the nonlinearity, thereby achieving remarkable improvement of the system robustness. Finally, numerical calculations and hardware-in-loop experiments are used to verify the effectiveness of the proposed reduce-order equivalent circuit and the linearization control method.
引文
[1]宋强,赵彪,刘文华,等.智能直流配电网研究综述[J].中国电机工程学报,2013,33(25):9-19.SONG Qiang,ZHAO Biao,LIU Wenhua,et al.An overview of research on smart DC distribution power network[J].Proceedings of the CSEE,2013,33(25):9-19.
    [2]李子欣,高范强,赵聪,等.电力电子变压器技术研究综述[J].中国电机工程学报,2018,38(5):1274-1289.LI Zixin,GAO Fanqiang,ZHAO Cong,et al.Research review of power electronic transformer technologies[J].Proceedings of the CSEE,2018,38(5):1274-1289.
    [3]宋强,赵彪,,刘文华,等.智能电网中的新一代高频隔离功率转换技术[J].中国电机工程学报,2014,34(36):6369-6379.SONG Qiang,ZHAO Biao,LIU Wenhua,et al.Next-generation high-frequency-isolation power conversion technology for smart grid[J].Proceedings of the CSEE,2014,34(36):6369-6379.
    [4]杨媛,文阳,李国玉.大功率IGBT模块及驱动电路综述[J].高电压技术,2018,44(10):3207-3220.YANG Yuan,WEN Yang,LI Guoyu.Review on high-power IGBTmodule and drive circuit[J].High Voltage Engineering,2018,44(10):3207-3220.
    [5]吴郁,刘晨静,金锐,等.逆导型IGBT技术发展综述[J].高电压技术,2018,44(10):3221-3230.WU Yu,LIU Chenjing,JIN Rui,et al.Review of reverse conducting IGBT technology development[J].High Voltage Engineering,2018,44(10):3221-3230.
    [6]侯慧,柯贤彬,王成智,等.区域电动汽车协调优化的充放电策略[J].高电压技术,2018,44(2):648-654.HOU Hui,KE Xianbin,WANG Chengzhi,et al.Coordinated optimazation strategy for electric vehicles’charging and discharging in different regions[J].High Voltage Engineering,2018,44(2):648-654.
    [7]KHERALUWALA M N,GASCOIGNE R W,DIVAN D M,et al.Performance characterization of a high-power dual active bridge DC-to-DC converter[J].IEEE Transactions on Industry Applications,1992,28(6):1294-1301.
    [8]郭洪玮,吴学智,王伟,等.新型无无功环流的双向隔离型DC/DC变换器[J].中国电机工程学报,2018,38(增刊):201-208.GUO Hongwei,WU Xuezhi,WANG Wei,et al.Novel bidirectional isolated DC/DC converter without reactive power circulation[J].Proceedings of the CSEE,2018,38(Supplement):201-208.
    [9]周路遥,姜久春.LCL谐振型双有源全桥双向DC-DC变换器分析与控制[J].电力系统自动化;2016,40(19):82-86.ZHOU Luyao,JIANG Jiuchun.Analysis and control of dual active bridge DC-DC converter based on LCL resonant network[J].Automation of Electric Power Systems,2016,40(19):82-86.
    [10]SANDERS S R,NOWOROLSKI J M,LIU X Z,et al.Generalized averaging method for power conversion circuits[J].IEEE Transactions on Power Electronics,1991,6(2):251-259.
    [11]VERGHESE G C,ELBULUK M E,KASSAKIAN J G.A general approach to sampled-data modeling for power electronic circuits[J].IEEE Transactions on Power Electronics,1986,1(2):76-89.
    [12]MUELLER J A,KIMBALL J W.An improved generalized average model of DC-DC dual active bridge converters[J].IEEE Transactions on Power Electronics,2018,33(11):9975-9988.
    [13]QIN H S,KIMBALL J W.Generalized average modeling of dual active bridge DC-DC converter[J].IEEE Transactions on Power Electronics,2012,27(4):2078-2084.
    [14]KRISMER F,KOLAR J W.Accurate small-signal model for the digital control of an automotive bidirectional dual active bridge[J].IEEETransactions on Power Electronics,2009,24(12):2756-2768.
    [15]SHI L,LEI W,LI Z,et al.Bilinear discrete-time modeling and stability analysis of the digitally controlled dual active bridge converter[J].IEEE Transactions on Power Electronics,2017,32(11):8787-8799.
    [16]COSTINETT D,ZANE R,MAKSIMOVIC D.Discrete-time small-signal modeling of a 1 MHz efficiency-optimized dual active bridge converter with varying load[C]∥Control and Modeling for Power Electronics(COMPEL),2012 IEEE 13th Workshop on.[S.l.]:IEEE,2012:1-7.
    [17]COSTINETT D.Reduced order discrete time modeling of ZVS transition dynamics in the dual active bridge converter[C]∥2015 IEEEApplied Power Electronics Conference and Exposition(APEC).Charlotte,NC,USA:IEEE,2015:365-370.
    [18]SHI L,LEI W J,HUANG J,et al.Full discrete-time modeling and stability analysis of the digital controlled dual active bridge converter[C]∥2016 IEEE 8th International Power Electronics and Motion Control Conference(IPEMC-ECCE Asia).Hefei,China:IEEE,2016:3813-3817.
    [19]ALONSO A R,SEBASTIAN J,LAMAR D G,et al.An overall study of a dual active bridge for bidirectional DC/DC conversion[C]∥Energy Conversion Congress and Exposition(ECCE),2010 IEEE.[S.l.]:IEEE,2010:1129-1135.
    [20]ZHANG K,SHAN Z,JATSKEVICH J.Large-and small-signal average-value modeling of dual-active-bridge DC-DC converter considering power losses[J].IEEE Transactions on Power Electronics,2017,32(3):1964-1974.
    [21]ZHANG F,REHMAN M M U,ZANE R,et al.Improved steady-state model of the dual-active-bridge converter[C]∥2015 IEEE Energy Conversion Congress and Exposition(ECCE).[S.l.]:IEEE,2015:630-636.
    [22]童安平,杭丽君,李国杰,等.基于离散迭代模型的DAB变换器等效电路研究[J].中国电机工程学报,2019,39(4):1138-1149.TONG Anping,HANG Lijun,LI Guojie,et al.A discrete-time model based equivalent circuit of DAB converter[J].Proceedings of the CSEE,2019,39(4):1138-1149.
    [23]ELAYDI S.An introduction to difference equations[M].New York,USA:Springer,2005:219-227
    [24]CALISKAN V A,VERGHESE O C,STANKOVIC A M.Multifrequency averaging of DC/DC converters[J].IEEE Transactions on Power Electronics,1999,14(1):124-133.
    [25]LEEB S B,KIRTLEY J L,VERGHESE G C.Recognition of dynamic patterns in DC-DC switching converters[J].IEEE Transactions on Power Electronics,1991,6(2):296-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700