密度泛函理论研究有机太阳能电池界面的激子分离及电荷转移速率:DR3TBDT/PC60BM 体系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Density functional theory study on the exciton separation and the rate constant of the charge transfer at DR3TBDT: PC60BM interface in organic solar cell
  • 作者:王冬梅 ; 田军 ; 郑茹 ; 柴垚
  • 英文作者:WANG Dong-Mei;TIAN Jun;ZHENG Ru;CHAI Yao;College of Chemistry, Baoji University of Arts.& Sci.;Qinghua Middle School;
  • 关键词:有机太阳能电池 ; 激子分离 ; 电荷转移 ; 密度泛函理论
  • 英文关键词:Organic solar cells;;Exciton dissociation;;Charge transfer;;Density functional theory
  • 中文刊名:YZYF
  • 英文刊名:Journal of Atomic and Molecular Physics
  • 机构:宝鸡文理学院化学化工学院;岐山县青化镇初级中学;
  • 出版日期:2018-10-22 09:35
  • 出版单位:原子与分子物理学报
  • 年:2019
  • 期:v.36
  • 基金:陕西省教育厅科研项目(16JK1050);; 宝鸡文理学院校级项目(ZK15049);; 大学生创新训练项目(17JGZD15)
  • 语种:中文;
  • 页:YZYF201901001
  • 页数:10
  • CN:01
  • ISSN:51-1199/O4
  • 分类号:7-16
摘要
本文选择DR3TBDT/PC60BM体系为模型,采用量子化学中的密度泛函理论方法,分别计算了孤立的给受体分子以及复合物的基态结构性质、吸收性质、激发态电荷转移,并通过Rehm-Well表达式,Marcus理论的双势阱、双球棍模型以及广义的Mulliken-Hush (GMH)模型分别计算了电子转移和电荷重组过程中的Gibbs自由能变、内外重组能以及电子耦合,最后通过Marcus电子转移速率方程得出了界面的电荷转移和重组速率,从动力学角度为新材料的设计提供了理论表征手段.
        We selected the DR_3TBDT/PC60 BM system as model and theoretically investigated the ground state properties, absorption properties, excited state charge transfers of free molecules and complex, and calculated the Gibbs free energy change, reorganization energy and electron coupling occurring in charge dissociation and recombination process through Rehm-Well expression, four point method and "two-sphere model" as well as Generalized Mulliken-Hush(GMH) model. Finally, the rate constants of interface charge dissociation and recombination were calculated by means of semiclassical Marcus rate expression. This work provides a theoretical characterization approach for the design of new materials from the dynamics viewpoint.
引文
[1] Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D. Solar cell efficiency tables (version 39)[J]. Prog. Photovolt.: Res. Appl., 2012, 20: 12.
    [2] Thompson BC, Frechet JM. Polymer-fullerene composite solar cells[J].Angew. Chem. Inter. Ed., 2008, 47: 58.
    [3] Brédas J L, Norton J E, Cornil J, et al. Molecular understanding of organic solar cells: the challenges[J]. Acc. Chem. Res., 2009, 42: 1691.
    [4] Green MA, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (version 48)[J].Prog. Photovolt.: Res. Appl., 2016, 24: 905.
    [5] Kanai Y, Grossman J C. Insights on interfacial charge transfer across P3HT/fullerene photovoltaic heterojunction from ab initio calculations[J]. Nano Lett., 2007, 7: 1967.
    [6] Heiber M C, Dhinojwala A. Estimating the magnitude of exciton delocalization in regioregular P3HT[J]. J. Phys. Chem. C, 2013: 21627.
    [7] D’Avino G, Mothy S, Muccioli L, et al. Energetics of electron–hole separation at P3HT/PCBM heterojunctions[J]. J. Phys. Chem. C, 2013, 117: 12981.
    [8] Zhou J, Wan X, Liu Y, et al. Small molecules based on benzo [1, 2-b: 4, 5-b′] dithiophene unit for high-performance solution-processed organic solar cells[J]. J. Am. Chem. Soc., 2012, 134: 16345.
    [9] Lemaur V, Steel M, Beljonne D, et al. Photoinduced charge generation and recombination dynamics in model donor/acceptor pairs for organic solar cell applications: a full quantum-chemical treatment[J]. J. Am. Chem. Soc., 2005, 127: 6077.
    [10] Brédas J-L, Beljonne D, Coropceanu V, et al. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture[J]. Chem. Rev., 2004, 104: 4971.
    [11] Leng C, Qin H, Si Y, et al. Theoretical prediction of the rate constants for exciton dissociation and charge recombination to a triplet state in PCPDTBT with different fullerene derivatives[J]. J. Phys. Chem. C, 2014, 118: 1843.
    [12] Li Y, Pullerits T, Zhao M, et al.Theoretical characterization of the PC60BM:PDDTT model for an organic solar cell[J]. J. Phys. Chem. C, 2011, 115: 21865.
    [13] Yanai T, Tew DP, Handy NC. A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP)[J]. Chem. Phys. Lett., 2004, 393: 51.
    [14] Ren Z H, Wang D M, Ding W L, et al. Influence of donor/acceptor substitution on photoelectric properties and nonlinear optical properties of D-π-A benzothiazole derivatives: a DFT study[J]. J. At. Mol. Phys., 2016, 33: 201 (in Chinese)[任忠海, 王冬梅, 丁伟璐, 等. DFT研究给/吸电子取代基对D-π-A型苯并噻唑衍生物光电性质及非线性光学性质的影响[J]. 原子与分子物理学报, 2016, 33: 201]
    [15] Zhou H, Yang L, You W. Rational design of high performance conjugated polymers for organic solar cells[J].Macromolecules, 2012, 45: 607.
    [16] Ding W L, Wang D M, Geng Z Y, et al. Molecular engineering of indoline-based D-A-π-A organic sensitizers toward high efficiency performance from first-principles calculations[J]. J. Phys. Chem. C, 2013, 117: 17382.
    [17] Yi Y, Coropceanu V, Bredas J L.Exciton-dissociation and charge-recombination processes in pentacene/C60 solar cells: theoretical insight into the impact of interface geometry[J]. J. Am. Chem. Soc., 2009, 131: 15777.
    [18] Liu T, Troisi A.Absolute rate of charge separation and recombination in a molecular model of the P3HT/PCBM interface[J]. J. Phys. Chem. C, 2011, 115: 2406.
    [19] Yi Y, Coropceanu V, Brédas J L. A comparative theoretical study of exciton-dissociation and charge-recombination processes in oligothiophene/fullerene and oligothiophene/perylenediimide complexes for organic solar cells[J].J. Mater. Chem., 2011, 21: 1479.
    [20] Marcus R A.Electron transfer reactions in chemistry: theory and experiment (nobel lecture)[J]. Angew. Chem. Inter. Ed., 1993, 32: 1111.
    [21] Zhao G Z. Theoretical study on intermolecular interactions of 4-amino-3, 5-dinitropyrazole dimers[J] J. At. Mol. Phys., 2017, 34: 1 (in Chinese)[赵国政. 4-氨基-3,5-二硝基吡唑二聚体分子间相互作用的理论研究[J]. 原子与分子物理学报, 2017, 34: 1]
    [22] Nelsen S F, Blackstock S C, Kim Y. Estimation of inner shell marcus terms for amino nitrogen compounds by molecular orbital calculations[J]. J, Am, Chem, Soc., 1987, 109: 677.
    [23] Nelsen S F, Blomgren F.Estimation of electron transfer parameters from AM1 calculations[J]. J. Org. Chem., 2001, 66: 6551.
    [24] Chen H Y, Chao I. Toward the rational design of functionalized pentacenes: reduction of the impact of functionalization on the reorganization energy[J]. Chemphyschem, 2006, 7: 2003.
    [25] Imahori H, Tkachenko N V, Vehmanen V, et al. An extremely small reorganization energy of electron transfer in porphyrin fullerene dyad[J]. J. Phys. Chem. A, 2001, 105: 1750.
    [26] Cave R J, Newton M D. Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: comparison of the generalized Mulliken–Hush and block diagonalization methods[J].J. Chem. Phys., 1997, 106: 9213.
    [27] Cave R J, Newton M D. Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements[J].Chem. Phys. Lett., 1996, 249: 15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700