八面体四氧化三铁亚微米晶负载铂催化剂用于室温催化氧化甲醛(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Pt supported on octahedral Fe_3O_4 microcrystals as a catalyst for removal of formaldehyde under ambient conditions
  • 作者:崔维怡 ; 薛丹 ; 谭乃迪 ; 郑彬 ; 贾明君 ; 张文祥
  • 英文作者:Weiyi Cui;Dan Xue;Naidi Tan;Bin Zheng;Mingjun Jia;Wenxiang Zhang;Key Laboratory of Chemical Cleaner Production Technology of Jilin Province, Jilin Institute of Chemical Technology;Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University;School of Chemistry&Chemical Engineering, Xi'an Shiyou University;
  • 关键词:八面体四氧化三铁 ; 铂纳米粒子 ; 界面作用 ; 催化氧化 ; 甲醛
  • 英文关键词:Octahedral Fe3O4;;Pt nanoparticles;;Interfacial interaction;;Catalytic oxidation;;Formaldehyde
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:吉林化工学院化工清洁生产技术吉林省高校重点实验室;吉林大学化学学院吉林省表面与界面化学重点实验室;西安石油大学化学化工学院;
  • 出版日期:2018-07-20
  • 出版单位:催化学报
  • 年:2018
  • 期:v.39
  • 基金:supported by the National Natural Science Foundation of China(20973080,21473074)~~
  • 语种:英文;
  • 页:CHUA201809014
  • 页数:9
  • CN:09
  • ISSN:21-1601/O6
  • 分类号:131-139
摘要
空气中低浓度甲醛的治理和消除一直备受关注.在较低的反应温度下将甲醛转化为CO_2和H_2O的催化氧化法具有能耗低、效率高和环境友好等优点,被认为是一种最具应用发展前景的甲醛消除技术.在各种催化剂体系中,一些铁基氧化物(Fe_2O_3,FFe_3O_4或ferrihydrite)负载的Pt催化剂表现出较为优异的催化性能,能够在室温下实现甲醛的完全氧化.越来越多的研究表明,载体材料的结构及形貌是影响贵金属催化剂性能的主要因素.因此,深入研究Pt物种在不同类型铁基氧化物表面的分散情况及界面间相互作用,对理解催化剂活性中心的性质,设计制备性能更加优异的负载型贵金属催化剂具有重要科学意义.本文采用共沉淀法一步合成出八面体Fe_3O_4亚微米晶负载Pt催化剂(Pt/Fe_3O_4),考察了不同热处理温度对催化剂催化甲醛氧化反应性能的影响.结果表明,在80°C下热处理的催化剂(Pt/Fe_3O_4-80)具有很高的催化活性,在室温下甲醛的转化率可接近100%.随着催化剂热处理温度的升高,催化剂活性有所降低.此外,Pt/Fe_3O_4催化剂还表现出良好的稳定性,经长时间存放或连续运行后催化剂的活性基本保持不变.此外,在一定湿度范围内(RH=30%–80%),水的存在能够显著提高Pt/Fe_3O_4催化剂的甲醛催化氧化性能.采用各种表征技术对Pt/Fe_3O_4的结构、形貌、价态及氧化还原性等物理化学性质进行了研究.结果表明:采用该合成方法能够得到粒径较为均一、具有尖晶石结构和八面体形貌的Fe_3O_4亚微米晶,尺寸较小的Pt纳米粒子(平均2.5 nm)均匀分布在八面体Fe_3O_4晶体的表面,且Fe_3O_4载体表面还存在一定量的羟基物种.随着热处理温度的升高,催化剂表面的Pt物种和Fe物种的价态均发生明显变化.结果证实,Pt纳米粒子与Fe_3O_4载体间的相互作用力会随着热处理温度的升高而发生明显变化.对于性能较为优异的Pt/Fe_3O_4-80催化剂,Pt纳米粒子与Fe_3O_4载体之间存在着强度适宜的相互作用,能够产生相对较多的Pt-O-Fe Ox和Pt-OH-Fe Ox界面活性位,从而使其能够在较低的反应温度下表现出较强的活化分子氧的能力.此外,反应体系中引入的水分子能够与氧分子在界面活性位上共同活化,形成表面活性-OH物种,从而有效促进催化剂反应性能的提升.
        Several catalysts comprising Pt supported on octahedral Fe_3O_4(Pt/Fe_3O_4) were prepared by a facile method involving co-precipitation followed by thermal treatment at different temperatures. A variety of characterization results revealed that this preparation process afforded highly crystalline octahedral Fe_3O_4 with a uniform distribution of Pt nanoparticles on its surface. The thermal-treatment temperature significantly influenced the redox properties of the Pt/Fe_3O_4 catalysts. All the Pt/Fe_3O_4 catalysts were found to be catalytically active and stable for the oxidation of low-concentration formaldehyde(HCHO) with oxygen. The catalyst prepared by thermal treatment at 80 °C(labelled Pt/Fe_3O_4-80) exhibited the highest catalytic activity, efficiently converting HCHO to CO2 and H2 O under ambient temperature and moisture conditions. The excellent performance of Pt/Fe_3O_4-80 was mainly attributed to beneficial interactions between the Pt and Fe species that result in the formation a higher density of active interface sites(e.g., Pt-O-FeO x and Pt-OH-FeO x). The introduction of water vapor improves the catalytic activity of the Pt/Fe_3O_4 catalysts as it participates in a water-assisted dissociation process.
引文
[1]A.P.Jones,Atmos.Environ.,1999,33,4535-4564.
    [2]J.Gunschera,S.Mentese,S.T.Salthammer,J.R.Andersen,Build.Environ.,2013,64,138-145.
    [3]X.J.Tang,Y.Bai,A.Duong,M.T.Smith,L.Y.Li,L.P.Zhang,Environ.Int.,2009,35,1210-1224.
    [4]T.Salthammer,Angew.Chem.Int.Ed.,2013,52,3320-3327.
    [5]L.H.Nie,J.G.Yu,M.Jaroniec,F.F.Tao,Catal.Sci.Technol.,2016,6,3649-3669.
    [6]H.B.Huang,Y.Xu,Q.Y.Feng,D.Y.C.Leung,Catal.Sci.Technol.,2015,5,2649-2669.
    [7]B.Y.Bai,Q.Qiao,J.H.Li,J.M.Hao,Chin.J.Catal.,2016,37,102-122.
    [8]J.Quiroz Torres,S.Royer,J.P.Bellat,J.M.Giraudon,J.F.Lamonier,Chem Sus Chem,2013,6,578-592.
    [9]Y.N.Shen,X.Z.Yang,Y.Z.Wang,Y.B.Zhang,H.Y.Zhu,L.Gao,M.L.Jia,Appl.Catal.B,2008,79,142-148.
    [10]C.B.Zhang,F.D.Liu,Y.P.Zhai,H.Ariga,N.Yi,Y.C.Liu,K.Asakura,M.Flytzani-Stephanopoulos,H.He,Angew.Chem.Int.Ed.,2012,51,9628-9632.
    [11]L.Ma,D.S.Wang,J.H.Li,B.Y.Bai,L.X.Fu,Y.D.Li,Appl.Catal.B,2014,148-149,36-43.
    [12]H.B.Huang,Y.C.Dennis,ACS Catal.,2011,1,348-354.
    [13]J.H.Zhang,Y.B.Li,L.Wang,C.B.Zhang,H.He,Catal.Sci.Technol.,2015,5,2305-2313.
    [14]P.Liu,H.P.He,G.L.Wei,X.L.Liang,F.H.Qi,F.D.Tan,W.Tan,J.X.Zhu,R.L.Zhu,Appl.Catal.B,2016,182,476-484.
    [15]Y.C.Huang,W.J.Fan,B.Long,H.B.Li,W.T.Qiu,F.Y.Zhao,Y.C.Tong,H.B.Ji,J.Mater.Chem.A,2016,4,3648-3654.
    [16]B.Y.Bai,H.Arandiyan,J.H.Li,Appl.Catal.B,2013,142-143,677-683.
    [17]N.H.An,Q.H.Yu,G.Liu,S.Y.Li,M.J.Jia,W.X.Zhang,J.Hazard.Mater.,2011,186,1392-1397.
    [18]N.H.An,P.Wu,S.Y.Li,M.J.Jia,W.X.Zhang,Appl.Surf.Sci.,2013,285P,805-809.
    [19]Z.X.Yan,Z.H.Xu,J.G.Yu,M.Jaroniec,Environ.Sci.Technol.,2015,49,6637-6644.
    [20]L.Suber,P.Imperatori,G.Ausanio,F.Fabbri,H.Hofmeister,J.Phys.Chem.B,2005,109,7103-7109.
    [21]Y.J.Chen,G.Xiao,T.S.Wang,Q.Y.Ouyang,L.H.Qi,Y.Ma,P.Gao,C.L.Zhu,M.S.Cao,H.B.Jin,J.Phys.Chem.C,2011,115,13603-13608.
    [22]L.H.Zhang,J.J.Wu,H.B.Liao,Y.L.Hou,S.Gao,Chem.Commun.,2009,4378-4380.
    [23]M.V.Kovalenko,M.I.Bodnarchuk,R.T.Lechner,G.Hesser,F.Schaffler,W.Heiss,J.Am.Chem.Soc.,2007,129,6352-6353.
    [24]J.Kim,J.E.Lee,S.H.Lee,J.H.Yu,J.H.Lee,T.G.Park,T.Hyeon,Adv.Mater.,2008,20,478-483.
    [25]G.N.Li,L.Li,B.H.Wu,J.X.Li,Y.Yuan,J.L.Shi,Nanoscale,2015,7,17855-17860.
    [26]C.M.Shang,G.B.Ji,W.Liu,X.M.Zhang,H.L.Lv,Y.W.Du,RSC Adv.,2015,5,80450-80456.
    [27]C.Lemire,R.Meyer,V.E.Henrich,S.Shaikhutdinov,H.J.Freund,Surf.Sci.,2004,572,103-114.
    [28]H.T.Yu,Y.C.Li,X.H.Li,L.Z.Fan,S.H.Yang,J.Mater.Chem.A,2014,2,15763-15767.
    [29]L.L.Geng,B.Zheng,X.Wang,W.X.Zhang,S.J.Wu,M.J.Jia,W.F.Yan,G.Liu,Chem Cat Chem,2016,8,805-811.
    [30]H.Li,J.Y.Liao,X.B.Zhang,J.Mater.Chem.A,2014,2,17530-17535.
    [31]R.Hudson,Y.T.Feng,R.S.Varma,A.Moores,Green Chem.,2014,16,4493-4505.
    [32]W.G.Yu,T.L.Zhang,J.G.Zhang,X.J.Qiao,L.Yang,Y.H.Liu,Mater.Lett.,2006,60,2998-3001.
    [33]I.S.Lyubutin,C.R.Lin,Y.V.Korzhetskiy,T.V.Dmitrieva,R.K.Chiang,J.Appl.Phys.,2009,106,034311/1-034311/6.
    [34]T.Yamashita,P.Hayes,Appl.Surf.Sci.,2008,254,2441-2449.
    [35]D.Wilson,M.A.Langell,Appl.Surf.Sci.,2014,303,6-13.
    [36]S.Poulin,R.Franc,L.Moreau-Be′langer,E.Sache,J.Phys.Chem.C,2010,114,10711-10718.
    [37]T.C.Lin,G.Seshadri,J.A.Kelber,Appl.Surf.Sci.,1997,119,83-92.
    [38]N.A.Eltouny,P.A.Ariya,Ind.Eng.Chem.Res.,2012,51,12787-12795.
    [39]L.Q.Liu,F.Zhou,L.G.Wang,X.J.Qi,F.Shi,Y.Q.Deng,J.Catal.,2010,274,1-10.
    [40]B.Zheng,G.Liu,L.L.Geng,J.Y.Cui,S.J.Wu,P.Wu,M.J.Jia,W.F.Yan,W.X.Zhang,Catal.Sci.Technol.,2016,6,1546-1554.
    [41]B.B.Chen,X.B.Zhu,M.Crocker,Y.Wang,C.Shi,Appl.Catal.B,2014,154-155,73-81.
    [42]N.H.An,S.Y.Li,P.N.Duchesne,P.Wu,W.L.Zhang,J.F.Lee,S.Cheng,P.Zhang,M.J.Jia,W.X.Zhang,J.Phys.Chem.C,2013,117,21254-21262.
    [43]W.Y.Cui,X.L.Yuan,P.Wu,B.Zheng,W.X.Zhang,M.J.Jia,RSC Adv.,2015,5,104330-104336.
    [44]W.Zhang,L.G.Gai,J.L.Li,H.H.Jiang,W.Y.Ma,J.Phys.D,2008,41,225001,1-6.
    [45]B.Y.Geng,J.Z.Ma,J.H.You.Cryst.Growth.Des.,2008,8,1443-1447.
    [46]N.H.An,W.L.Zhang,X.L.Yuan,B.Pan,G.Liu,M.J.Jia,W.F.Yan,W.X.Zhang,Chem.Eng.J.,2013,215-216,1-6.
    [47]S.Y.Li,M.J.Jia,J.Gao,P.Wu,W.L.Yang,S.H.Huang,X.W.Dou,Y.Yang,W.X.Zhang,J.Phys.Chem.C,2015,119,2483-2490.
    [48]R.Rajasree,J.H.B.J.Hoebink,J.C.Schouten,J.Catal.,2004,223,36-43.
    [49]F.Ringleb,Y.Fujimori,H.F.Wang,H.Ariga,E.Carrasco,M.Sterrer,H.J.Freund,L.Giordano,G.Pacchioni,J.Goniakowski,J.Phys.Chem.C,2011,115,19328-19335.
    [50]G.X.Chen,Y.Zhao,G.Fu,P.N.Duchesne,L.Gu,Y.P.Zheng,X.F.Weng,M.S.Chen,P.Zhang,C.W.Pao,J.F.Lee,N.F.Zheng,Science,2014,344,495-499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700