音频大地电磁数据非线性共轭梯度3D反演在江西相山铀矿勘查中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of 3D NLCG inversion of AMT data in uranium exploration at Xiangshan,Jiangxi
  • 作者:夏广沛 ; 翁爱华 ; 李建平 ; 李世文 ; 杨悦 ; 胡英才
  • 英文作者:XIA Guang-pei;WENG Ai-hua;LI Jian-ping;LI Shi-wen;YANG Yue;HU Ying-cai;College of Geo-exploration Science and Technology,Jilin University;Beijing Research Institute of Uranium Geology;
  • 关键词:音频大地电磁 ; 3D反演 ; 相山 ; 铀矿田 ; 非线性共轭梯度法
  • 英文关键词:AMT;;3D inversion;;Xiangshan;;uranium ore field;;NLCG
  • 中文刊名:SJDZ
  • 英文刊名:Global Geology
  • 机构:吉林大学地球探测科学与技术学院;核工业北京地质研究院;
  • 出版日期:2019-03-21 12:44
  • 出版单位:世界地质
  • 年:2019
  • 期:v.38
  • 基金:国家自然科学基金(41604126);; 中国地质调查项目(DD2016013628)联合资助
  • 语种:中文;
  • 页:SJDZ201901024
  • 页数:10
  • CN:01
  • ISSN:22-1111/P
  • 分类号:249-257+294
摘要
相山铀矿田是中国重要的铀矿生产基地。为研究相山铀矿田地球物理特征,进而寻找相山地区铀成矿的有利部位,笔者利用非线性共轭梯度3D反演方法进行反演计算。结果显示,该地区地下结构表现出明显的3层结构,推测第一层高阻异常是下白垩统鹅湖岭组,第二层低阻异常是下白垩统打鼓顶组,第三层高阻异常是中元古界基底变质岩。结合地质情况,根据测井曲线得到第一层与第二层之间的第一成矿界面电阻率约为2 000Ω·m,第二层与第三层之间的第二成矿界面电阻率约为500Ω·m。依据两成矿界面电阻率描绘出测区的成矿界面的形态特征呈现地区分布不均匀性,第一成矿界面西南部保存较好,测区南部被断层切割明显;第二成矿界面在中部保存较好,边缘缺失。根据成矿界面和断裂复合部位得到成矿有利区,第一成矿界面的有利区位于测区中部和南部,第二成矿界面的有利区位于测区边缘。
        Xiangshan uranium ore field is an important uranium production base in China. In this study,the author use 3 D NLCG inversion method to understand the geophysical characteristics of Xiangshan uranium ore field and locate the favorable positions of uranium mineralization in Xiangshan area. The results show that there are three distinct layers in the subsurface,the first layer with high resistivity anomaly is the Lower Cretaceous Ehuling Formation,the second layer with low resistivity anomaly is the Lower Cretaceous Daguding Formation,and the third layer with high resistivity anomaly is the Mesoproterozoic basement metamorphic rock. Combined with the geological conditions and well logs,the resistivity of the first metallogenic interface between the first layer and the second layer is about 2 000 Ω·m,and the resistivity of the second metallogenic interface between the second layer and the third layer is about 500 Ω·m. According to the resistivity of the two metallogenic interfaces,the morphological characteristics of the metallogenic interface in the survey area varies with locations. The southwestern part of the first metallogenic interface is well preserved,and the southern part is obviously cut by faults. The second metallogenic interface is well preserved in the central part,and the edge is missing. The combination of faults and metallogenic interfaces is defined as the favorable areas of mineralization,therefore,the favorable area of the first metallogenic interface is the central and southern part of the survey area,and the favorable area of the second metallogenic interface is located at the edge of the survey area.
引文
[1]陈越.相山铀矿田地球物理特征及深部地质结构研究:博士学位论文[D].北京:核工业北京地质研究院,2014.CHEN Yue.Study on geophysical characteristics and deep geological structures of uranium orefield in Xiangshan:doctor's degree thesis[D].Beijing:Research Institute of Uranium Geology,2014.
    [2]段书新,刘祜.AMT方法在相山铀矿田乐家地区深部地质结构探测中的应用[J].世界核地质科学,2014,31(3):531-535.DUAN Shu-xin,LIU Hu.Application of AMT in detecting deep geological structures in Lejia district of Xiangshan uranium ore field[J].World Nuclear Geoscience,2014,31(3):531-535.
    [3]张万良,李子颖,刘德长,等.赣中抚州-永丰断裂新构造活动踪迹及其找矿意义[J].地质找矿论丛,2015,30(1):23-29.ZHANG Wan-liang,LI Zi-ying,LIU De-chang,et al.The Neotectonic activity trail of Fuzhou-Yongfeng fault and its significance to uranium ore exploration in central Jiangxi Province[J].Contributions to Geology and Mineral Resources Research,2015,30(1):23-29.
    [4]林锦荣,胡志华,谢国发,等.相山铀矿田深部找矿标志及找矿方向[J].铀矿地质,2013,29(6):321-327.LIN Jin-rong,HU Zhi-hua,XIE Guo-fa,et al.The indicators and direction for deep exploration in Xiangshan uranium ore field[J].Uranium Geology,2013,29(6):321-327.
    [5]邓声保.相山铀矿田研究新进展[J].能源研究与管理,2016,23(1):90-92.DENG Sheng-bao.New research progress in Xiangshan uranium orefield[J].Energy Research and Management,2016,23(1):90-92.
    [6]林锦荣,胡志华,谢国发,等.相山火山盆地组间界面、基底界面特征及其对铀矿的控制作用[J].铀矿地质,2014,30(3):135-140.LIN Jin-rong,HU Zhi-hua,XIE Guo-fa,et al.The characteristics of interfaces between formations and basement in Xiangshan volcanic basin and their controls on uranium deposits[J].Uranium Geology,2014,30(3):135-140.
    [7]汤井田,周聪,任政勇,等.安徽铜陵矿集区大地电磁数据三维反演及其构造格局[J].地质学报,2014,88(4):598-611.TANG Jing-tian,ZHOU Cong,REN Zheng-yong,et al.Three dimensional magnetotelluric inversion and structural framework of Tongling ore district,Anhui[J].Acta Geologica Sinica,2014,88(4):598-611.
    [8]郭春玲,陈小斌.大地电磁资料精细处理和二维反演解释技术研究六:交错模型的大地电磁二维反演[J].地球物理学报,2018,61(6):2548-2559.GUO Chun-ling,CHEN Xiao-bin.Refined processing and two-dimensional inversion of magnetotelluric(MT)data(VI):two-dimensional magnetotelluric inversion based on the staggered model[J].Chinese Journal of Geophysics,2018,61(6):2548-2559.
    [9]魏文博.我国大地电磁测深新进展及瞻望[J].地球物理学进展,2002,17(2):245-254.WEI Wen-bo.New advance and prospect of magnetotelluric sounding(MT)in China[J].Progress in Geophysics,2002,17(2):245-254.
    [10]Zhdanov M S,Fang S,Hursán G.Electromagnetic inversion using quasi-linear approximation[J].Geophysics,2000,65(5):1501-1513.
    [11]胡祥云,李焱,杨文采,等.大地电磁三维数据空间反演并行算法研究[J].地球物理学报,2012,55(12):3969-3978.HU Xiang-yun,LI Yan,YANG Wen-cai,et al.Three-dimensional magnetotelluic parallel inversion algorithm using data space method[J].Chinese Journal of Geophysics,2012,55(12):3969-3978.
    [12]阮帅.三维大地电磁有限内存拟牛顿反演:博士学位论文[D].成都:成都理工大学,2015.RUAN Shuai.Three-dimensional magnetotelluric inversion based on limited memory quasi-newton method:doctor's degree thesis[D].Chengdu:Chengdu University of Technology,2015.
    [13]Egbert G D,Kelbert A.Computational recipes for electromagnetic inverse problems[J].Computers&Geosciences,2012,189(1):251-267.
    [14]Kelbert A,Meqbel N,Egbert G D,et al.ModEM:a modular system for inversion of electromagnetic geophysical data[J].Computers and Geosciences,2014,66(66):40-53.
    [15]李建平.中国东北地区新生代火山深部电性结构及流变分析:博士学位论文[D].长春:吉林大学,2018.LI Jian-ping.Deep electrical structure and rheological analysis of Cenozoic volcanism in Northeast China:doctor's degree thesis[D].Changchun:Jilin University,2018.
    [16]邵飞,陈晓明,徐恒力,等.江西省相山铀矿田成矿模式探讨[J].地质力学学报,2008,28(1):65-73.SHAO Fei,CHEN Xiao-ming,XU Heng-li,et al.Metallogenic model of the Xiangshan uranium orefiel,Jiangxi Province[J].Journal of Geomechanics,2008,28(1):65-73.
    [17]陈乐寿,王光锷.大地电磁测深法[M].北京:地质出版社,1990:1-20.CHEN Le-shou,WANG Guang-e.Magnetotelluric sounding method[M].Beijing:Geological Publishing House,1990:1-20.
    [18]罗旭,毛星,魏文博,等.大地电磁数据三维反演技术在隐伏断裂勘察中的应用:以郯庐断裂宿迁段为例[J].现代地质,2016,30(3):587-596.LUO Xu,MAO Xing,WEI Wen-bo,et al.Application of 3-D inversion method of AMT data on the detection of hidden faults in the near-surface structure:an example from Tan-Lu fault zone[J].Geoscience,2016,30(3):587-596.
    [19]Egbert G D,Booker J R.Robust estimation of geomagnetic transfer functions[J].Geophysical Journal of the Royal Astronomical Society,1986,87(1):173-194.
    [20]Polak E,Ribière G.Note sur la convergence de méthodes de directions conjuguées[J].Revue Fran9aise D'informatique et de Recherche Opérationnelle,1969,16(3):35-43.
    [21]刘文玉.本溪-集安地区三维地质综合地球物理研究:硕士学位论文[D].长春:吉林大学,2015.LIU Wen-yu.3D geological comprehensive geophysical research in Benxi-Ji'an area:master's degress thesis[D].Changchun:Jilin University,2015.
    [22]黄海朋.相山西部河元背地区AMT数据应用及找矿方向探讨[J].绿色科技,2016(12):221-223.HUANG Hai-peng.Discussion on application of audio magnetotelluric method data and the prospect direction of Heyuanbei in the west part of Xiangshan[J].Journal of Green Science and Technology,2016(12):221-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700