聚丙烯釜内合金物理分级方法进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in Physical Fractionation of Polypropylene In-Reactor Alloy
  • 作者:邢倩 ; 李荣波
  • 英文作者:Qian Xing;Rongbo Li;School of Materials Science and Mechanical Engineering, Beijing Technology and Business University;Petrochina Petrochemical Research Institute;
  • 关键词:聚丙烯釜内合金 ; 物理分级 ; 化学组成 ; 链结构
  • 英文关键词:PP in-reactor alloy;;physical fractionation;;chemical composition;;chain structure
  • 中文刊名:GFZC
  • 英文刊名:Polymer Materials Science & Engineering
  • 机构:北京工商大学材料与机械工程学院;中国石油天然气股份有限公司石油化工研究院;
  • 出版日期:2019-03-15
  • 出版单位:高分子材料科学与工程
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金资助项目(51403210);; 中国石油石油化工研究院创新基金(11-YK-05-19)
  • 语种:中文;
  • 页:GFZC201903031
  • 页数:6
  • CN:03
  • ISSN:51-1293/O6
  • 分类号:190-195
摘要
聚丙烯釜内合金是多相多组分复杂体系,其化学组成和链结构与最终的物理力学性能密切相关,综合利用多种表征手段全面剖析其本体和各组分的化学结构显得尤为重要。通过对聚丙烯釜内合金进行物理分级,才能精准剖析各组分的链结构。根据溶剂种类和温度程序的不同,分级方法主要有单溶剂法、多溶剂法、温度梯度萃取法、升温淋洗法和交叉分级法等。文中通过典型案例的方式综述了各分级方法的基本原理和实际应用。
        PP in-reactor alloy exhibits complex composition and phase morphology. It seems very important to characterize the chemical structure of PP in-reactor alloy and its fractions, since its chemical composition and chain structure are closely related to the ultimate physical-mechanical properties. The conventional techniques adopted to physically fractionate PP in-reactor alloy were reviewed systematically, including single solvent extraction, multiple solvents extraction, temperature gradient extraction fractionation, temperature rising elution fractionation and cross fractionation analysis, etc. The basic principle and practical application of each method were addressed in detail by classic cases.
引文
[1] Galli P. The breakthrough in catalysis and processes for olefin polymerization: Innovative structures and a strategy in the materials area for the twenty-first century [J]. Prog. Polym. Sci., 1994, 19: 959-974.
    [2] Galli P, Collina G, Sgarzi P, et al. Combining Ziegler-Natta and mettalocene catalysis: new heterophasic propylene copolymers from the novel multicatalyst reactor granule technology [J]. J. Appl. Polym. Sci., 1997, 66: 1831-1837.
    [3] Galli P, Haylock J C. Advances in Zigler-Natta polymerization-unique polyolefin copolymers, alloys and blends made directly in the reactor [J]. Makromol. Chem. Macromol. Symp., 1992, 63: 19-54.
    [4] Galli P, Haylock J C, DeNicola A. High performance polyolefins: the new way towards engineering plastics applications [J]. Macromol. Symp., 1995, 100: 95-100.
    [5] Galli P, Vecellio G. Technology: driving force behind innovation and growth of polyolefins [J]. Prog. Polym. Sci., 2001, 26: 1287-1336.
    [6] Cecchin G, Morini G, Pelliconi A. Polypropene product innovation by reactor granule technology [J]. Macromol. Symp., 2001, 173: 195-210.
    [7] Li R, Xing Q, Zhao Y, et al. Correlation between chain microstructure and mechanical properties of two polypropylene/poly (ethylene-co-propylene) in-reactor alloys [J]. Colloid Polym. Sci., 2015, 293: 1011-1021.
    [8] Li R, Zhang X, Zhao Y, et al. New polypropylene blends toughened by polypropylene/poly(ethylene-co-propylene) in-reactor alloy: compositional and morphological influence on mechanical properties [J]. Polymer, 2009, 50: 5124-5133.
    [9] Zhu H J, Monrabal B, Han C C, et al. Phase structure and crystallization behavior of polypropylene in-reactor alloys: Insights from both inter- and intramolecular compositional heterogeneity [J]. Macromolecules, 2008, 41: 826-833.
    [10] Sun Z H, Yu F S, Qi Y C. Characterization, morphology and thermal properties of ethylene-propylene block copolymers [J]. Polymer, 1991, 32: 1059-1064.
    [11] Randall J C. Sequence distributions versus catalyst site behavior of in situ blends of polypropylene and poly(ethylene-co-propylene) [J]. J. Polym. Sci. Part A: Polym. Chem., 1998, 36: 1527-1542.
    [12] 罗华林, 赵莹, 吴瑾光, 等. 抗冲共聚聚丙烯中二甲苯可溶物的链结构与性能研究 [J]. 光谱学与光谱分析, 2012, 32(12): 3363-3366.Luo H L,Zhao Y,Wu J G,et al. Investigation of the chain structure and thermal property of xylene solubles of impact polypropylene copolymers[J]. Spectroscopy and Spectral Analysis, 2012, 32(12): 3363-3366.
    [13] 肖士镜, 余赋生. 烯烃配位聚合催化剂及聚烯烃 [M]. 北京: 北京工业大学出版社, 2002: 359.
    [14] Cai H J, Luo X L, Ma D Z, et al. Structure and properties of impact copolymer polypropylene. I. Chain structure [J]. J. Appl. Polym. Sci., 1999, 71: 93-101.
    [15] Cai H J, Luo X L, Chen X X, et al. Structure and properties of impact copolymer polypropylene. II. Phase structure and crystalline morphology [J]. J. Appl. Polym. Sci., 1999, 71: 103-113.
    [16] Fan Z Q, Zhang Y Q, Xu J T, et al. Structure and properties of polypropylene/poly(ethylene-co-propylene) in-situ blends synthesized by spherical Ziegler-Natta catalyst [J]. Polymer, 2001, 42: 5559-5566.
    [17] Fu Z, Xu J, Zhang Y, et al. Chain structure and mechanical properties of polyethylene/polypropylene/poly(ethylene-co-propylene) in-reactor alloys synthesized with a spherical Ziegler-Natta catalyst by gas-phase polymerization [J]. J. Appl. Polym. Sci., 2005, 97: 640-647.
    [18] Fu Z, Fan Z, Zhang Y, et al. Chain structure of polyethylene/polypropylene in-reactor alloy synthesized in gas phase with spherical Ziegler-Natta catalyst [J]. Polym. Int., 2004, 53: 1169-1175.
    [19] Xu J, Feng L, Yang S, et al. Separation and identification of ethylene-propylene block copolymer [J]. Polymer, 1997, 38: 4381-4385.
    [20] Zacur R, Goizueta G, CIapiati N. Polypropylene reactor blends: composition evaluation by analytical TREF [J]. Polym. Eng. Sci., 1999, 39: 921-929.
    [21] Zacur R, Goizueta G, Capiati N. Dispersed phase morphology of impact PP copolymers. Effects of blend composition as determined by TREF [J]. Polym. Eng. Sci., 2000, 40: 1921-1930.
    [22] Fu Z S, Fan Z Q, Zhang Y Q, et al. Structure and morphology of polypropylene/poly(ethylene-co-propylene) in situ blends synthesized by spherical Ziegler-Natta catalyst [J]. Eur. Polym. J., 2003, 39: 795-804.
    [23] Wild L, Gl?ckner G. Temperature rising elution fractionation[M]//Separation techniques thermodynamics liquid crystal polymers. Heidelberg, Berlin: Springer, 1990: 1-47.
    [24] Xu J, Feng L. Application of temperature rising elution fractionation in polyolefins [J]. Eur. Polym. J., 2000, 36: 867-878.
    [25] Anantawaraskul S, Soares J B P, Wood-Adams P M. Fractionation of Semicrystalline polymers by crystallization analysis fractionation and temperature rising elution fractionation[M]//Polymer analysis polymer theory. Heidelberg,Berlin: Springer, 2005: 1-54.
    [26] Wild L, Ryle T R, Knobeloch D C, et al. Determination of branching distributions in polyethylene and ethylene copolymers [J]. J. Polym. Sci.: Polym. Phys. Ed., 1982, 20: 441-455.
    [27] Mirabella J F M. Impact polypropylene copolymers: fractionation and structural characterization [J]. Polymer, 1993, 34: 1729-1735.
    [28] Feng Y, Hay J N. The Measurement of compositional heterogeneity in a propylene-ethylene block copolymer [J]. Polymer, 1998, 39: 6723-6731.
    [29] Xu J, Feng L. Characterization of microstructure of polypropylene alloys [J]. Polym. Int., 1998, 47: 433-438.
    [30] Xu J, Yang Y, Feng L, et al. Microtacticity of polypropylene fractions produced by different active sites of heterogeneous Ziegler-Natta catalyst [J]. J. Appl. Polym. Sci., 1996, 62: 727-731.
    [31] Zhou X Q, Hay J N. Fractionation and structural properties of linear low density polyethylene[J]. Eur. Polym. J., 1993,29: 291-300.
    [32] Ortin A, Monrabal B, Sancho-Tello J. Development of an automated cross-fractionation apparatus (TREF-GPC) for a full characterization of the bivariate distribution of polyolefins [J]. Macromol. Symp., 2007, 257: 13-28.
    [33] Faldi A, Soares J B P. Characterization of the combined molecular weight and composition distribution of industrial ethylene/[alpha]-olefin copolymers [J]. Polymer, 2001, 42: 3057-3066.
    [34] Soares J B P. An overview of important microstructural distributions for polyolefin analysis [J]. Macromol. Symp., 2007, 257: 1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700