非对称冲击-卸载实验中纵波声速的特征线分析方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristic method to infer the high-pressure sound speed in a nonsymmetric impact and release experiment
  • 作者:潘昊 ; 吴子辉 ; 胡晓棉
  • 英文作者:Pan Hao;Wu Zi-Hui;Hu Xiao-Mian;Key Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics;Graduate School,China Academy of Engineering Physics;
  • 关键词:声速 ; 特征线方法 ; 冲击加载
  • 英文关键词:sound speed;;characteristic method;;shock compression
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:北京应用物理与计算数学研究所计算物理重点实验室;中国工程物理研究院研究生部;
  • 出版日期:2016-04-20 10:20
  • 出版单位:物理学报
  • 年:2016
  • 期:v.65
  • 语种:中文;
  • 页:WLXB201611024
  • 页数:6
  • CN:11
  • ISSN:11-1958/O4
  • 分类号:184-189
摘要
材料高压声速是获取材料在冲击下的剪切模量、强度和相变信息的重要物理量,对于研究材料在高速冲击下的行为非常重要.由于飞片、样品和窗口材料阻抗失配等因素,传统的声速分析方法无法对非对称冲击-卸载实验中单样品的窗口界面速度进行准确的分析.本文在反向特征线方法的基础上,考虑了飞片与样品、样品和窗口界面的相互作用,建立了适合于仅含单一厚度样品的非对称冲击-卸载实验的特征线声速分析方法,通过对数值实验给出的速度剖面的分析表明,该方法能够较为准确地获得待测材料高压下的声速及卸载路径.
        Sound speed is of great importance for high velocity impact phenomena because it is a fundamental parameter to deduce the shear moduli,strengths and phase transitions of materials at high pressure.It has attracted much attention because of significant challenges to experiment and simulation.In practice,with the development of laser interferometer measurement system,one can obtain velocity-time histories of windowed-surfaces or free surfaces with high resolution in shock or ramp compression and unload experiments.This development provides a possible way to infer the sound speed from these velocity profiles.The key problem is to build valid analysis technique to extract the sound speed.Commonly used Lagrangian analysis methods include backward integration method,incremental impedance matching method,transfer function method and backward characteristic analysis method.However,all of these methods hardly infer the right results from the nonsymmetric impact and release experiment with only one depth of material due to the complex impedance mismatch among a flyer,sample and window.Some decreasing impedance mismatch techniques have been developed for the experiments including reverse impact or using a high strength flyer,but these techniques will limit the pressure range or need a newly designed gun with large caliber.In fact,the traditional backward characteristic analysis method only considers the sample/window interaction while bending of the incoming characteristics due to impedance difference between the flyer and sample is always ignored,which causes a distortion to the loading condition of samples.Thus in this work,we add forward characteristics to describe rarefaction wave reflection at the flyer/sample interface.Then a reasonable loading-releasing in-situ velocity profile of the interface can be derived from this improvement.We use the improved/tradition characteristics and incremental impedance matching method to analyze a synthetic nonsymmetric impact experiment in which the flyer,sample and window are of Al,Cu and Li F,respectively.Synthetic analyses suggest that the modified characteristic method can give more accurate results including sound speed-particle velocity and release path at high pressure.Compared with other methods,the new characteristic method just needs to know the release path of flyer and window that can be calibrated by well-developed technique,moreover,this method also does not need to know the form of equation of state and constitutive model of the sample.Calculation of this method is not complex and the iterative approach usually achieves convergence in less than 10 steps.All of these features will facilitate using this method to infer sound speed from the velocity profile of nonsymmetric impact experiments.
引文
[1]Asay J R,Kerley G I 1987 Int.J.Impact Eng.5 69
    [2]Yu Y Y,Tan Y,Dai C D,Li X M,Li Y H,Tan H 2014Acta Phys.Sin.63 026202(in Chinese)[俞宇颖,谭叶,戴诚达,李雪梅,李英华,谭华2014物理学报63 026202]
    [3]Hu J B,Zhou X M,Tan H,Li J B,Dai C D 2008 Appl.Phys.Lett.92 111905
    [4]Huang H,Asay J R 2005 J.Appl.Phys.98 033524
    [5]Furnish M D,Alexander C S,Brown J L,Reinhart W D 2014 J.Appl.Phys.115 033511
    [6]Tan Y,Yu Y Y,Dai C D,Yu J D,Wang Q S,Tan H2013 Acta Phys.Sin.62 036401(in Chinese)[谭叶,俞宇颖,戴诚达,于继东,王青松,谭华2013物理学报62036401]
    [7]Pan H,Hu X M,Wu Z H,Dai C D,Wu Q 2012 Acta Phys.Sin.61 206401(in Chinese)[潘昊,胡晓棉,吴子辉,戴诚达,吴强2012物理学报61 206401]
    [8]Asay J R,Lipkin J 1978 J.Appl.Phys.49 4242
    [9]Hayes D B,Hall C A,Asay J R,Knudson M D 2004 J.Appl.Phys.96 5520
    [10]Rothman S D,Davis J P,Maw J,Robinson C M,Parker K,Palmer J 2005 J.Phys.D 38 733
    [11]Brown J L,Alexander C S,Asay J R,Vogler T J,Ding J L 2013 J.Appl.Phys.114 223518
    [12]Brown J L,Alexander C S,Asay J R,Vogler T J,Dolan D H,Belof J L 2014 J.Appl.Phys.115 043530
    [13]Rothman S,Edwards R,Vogle,T J,Furnish M D 2012Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter Chicago,United States,June 26–July 1,2011 p104
    [14]Pan H,Hu X M,Wu Z H 2015 EPJ Web Conf.94 01007
    [15]Lowe M R,Rothman S D,Chapman D,Robinson C 2014J.Phys.Conf.Series 500 112043
    [16]Rothman S D,Davis J P,Gooding S,Knudson M D,Ao T 2014 J.Phys.Conf.Series 500 032016
    [17]Tan H 2006 Introduction to Experimental Shock-Wave Physics(Beijing:National Defense Industry Press)p160(in Chinese)[谭华2006实验冲击波物理导引(北京:国防工业出版社)第160页]
    [18]Duffy T S,Ahrens T J 1995 J.Geophys.Res.100 529
    [19]Casem D T,Dandekar D P 2012 J.Appl.Phys.111063508
    [20]Li W X 2003 One-Dimensional Nonsteady Flow and Shock Waves(Beijing:National Defense Industry Press)p98,p215(in Chinese)[李维新2003一维不定常流与冲击波(北京:国防工业出版社)第98,215页]
    [21]Steinberg D J,Cochran S G,Guinan M W 1980 J.Appl.Phys.51 1498
    [22]Fratanduono D E,Boehly T R,Barrios M A,Meyerhofer D D,Eggert J H,Smith R F,Hicks D G,Celliers P M,Braun D G,Collins G W 2011 J.Appl.Phys.109123521

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700