用户名: 密码: 验证码:
甲酸法绿色分离缅甸黄花梨中木质素和纤维素的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fractionation of lignin and cellulose from Pterocarpus macarocarpus Kurz using formic acid
  • 作者:朱盛伟 ; 展旺 ; 于鸿飞 ; 刘云
  • 英文作者:ZHU ShengWei;ZHAN Wang;YU HongFei;LIU Yun;College of Life Science and Technology, Beijing University of Chemical Technology;
  • 关键词:甲酸法 ; 木质素 ; 分离 ; 纤维素 ; 甲酰化改性
  • 英文关键词:formic acid method;;lignin;;fractionation;;cellulose;;formylation modification
  • 中文刊名:BJHY
  • 英文刊名:Journal of Beijing University of Chemical Technology(Natural Science Edition)
  • 机构:北京化工大学生命科学与技术学院;
  • 出版日期:2019-03-20
  • 出版单位:北京化工大学学报(自然科学版)
  • 年:2019
  • 期:v.46
  • 基金:国家自然科学基金(21476016/21776009)
  • 语种:中文;
  • 页:BJHY201902009
  • 页数:7
  • CN:02
  • ISSN:11-4755/TQ
  • 分类号:59-65
摘要
采用甲酸法处理缅甸黄花梨生物质,分离木质素和纤维素,探究了甲酸浓度、反应温度和时间对木质素分离效果的影响,结果表明最佳工艺参数为:甲酸质量分数88%,反应温度110℃,反应时间2 h。在此条件下的纤维素得率为89.56%,木质素含量(质量分数)为90%。傅里叶转换红外光谱(FT-IR)和高效液相色谱(HPLC)的分析表明,经过甲酸处理得到的纤维素和木质素都发生了不同程度的甲酰化修饰改性。X射线衍射(XRD)结果显示,经甲酸法处理后,纤维素的结晶度增大。以上结果可为生物质组分分离及其功能性材料制备提供技术支撑。
        Lignin is the most dominant aromatic compound in nature; it has great potential applications in the fields of energy, pharmaceuticals, food and fine chemicals. Therefore, it is of great significance to develop the efficient green fractionation of lignin from biomass. In this work, formic acid was used as a solvent to fractionate lignin and cellulose from Pterocarpus macarocarpus Kurz biomass. The key factors affecting fractionation efficiency were investigated, including formic acid concentration, reaction time and temperature. The results showed that the optimum conditions were: 88% formic acid, temperature of 110 ℃ and reaction time of 2 h. Under the optimized conditions, 89.56% of cellulose was obtained, and the lignin purity was 90%. FT-IR and HPLC analyses revealed that the structure of both cellulose and lignin was formylated by treatment with formic acid. XRD curves showed that the crystallinity of cellulose increased after formic acid treatment. The findings in this work provide a novel way to fractionate lignin and cellulose from biomass in a green and sustainable fashion.
引文
[1] LIU Y, ZHOU H, WANG L Y, et al. Improving Saccharomyces erevisiae growth against lignocellulose-derived inhibitors as well as maximizing ethanol production by a combination proposal of γ-irradiation pretreatment with in situ detoxification [J]. Chemical Engineering Journal, 2016, 287: 302- 312.
    [2] DEN W, SHARMA V K, LEE M, et al. Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to energy and value-added chemicals [J]. Frontier in Chemistry, 2018, 6: 141.
    [3] DING S Y, LIU Y S, ZENG Y, et al. How does plant cell wall nanoscale architecture correlate with enzymatic igestibility? [J]. Science, 2012, 338: 1055- 1060.
    [4] ZHOU H, ZHANG R L, ZHAN W, et al. High biomass loadings of 40wt% for efficient fractionation in biorefineries with an aqueous solvent system without adding adscititious catalyst [J]. Green Chemistry, 2016, 18: 6108- 6114.
    [5] CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Material, 2017, 16: 16- 22.
    [6] TIAN S Q, ZHAO R Y, CHEN Z C. Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 483- 489.
    [7] SIEVERSD A, KUHN E M, TUCKER M P, et al. Effects of dilute-acid pretreatment conditions on filtration performance of corn stover hydrolyzate[J]. Bioresource Technology, 2017, 243: 474- 480.
    [8] DA COSTA SOUSA L, JIN M J, CHUNDAWAT S P S, et al. Next-generation ammonia pretreatment enhances cellulosic biofuel production[J]. Energy & Environmental Science, 2016, 9: 1215- 1223.
    [9] ZHAO X B, LI S M, WU R C, et al. Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures[J]. Biofuels, Bioproducts & Biorefining, 2017, 11: 567- 590.
    [10] LI M F, SUN S N, XU F, et al. Formic acid based organosolv pulping of bamboo (Phyllostachys acuta): comparative characterization of the dissolved lignins with milled wood lignin[J]. Chemical Engineering Journal, 2012, 179(4): 80- 89.
    [11] ZHANG M J, QI W, LIU R, et al. Fractionating lignocellulose by formic acid: characterization of major components[J]. Biomass & Bioenergy, 2010, 34: 525- 532.
    [12] 何伟, 耿莉莉, 曾永明, 等. 甲酸法分离棉秆木质素的条件优化[J]. 江苏农业科学, 2016, 44(8): 383- 385, 388. HE W, GENG L L, ZENG Y M, et al. Optimization on fractionation of lignin through formic acid proposal from cotton stalk[J]. Jiangsu Agricultural Sciences, 2016, 44(8): 383- 385, 388. (in Chinese)
    [13] SLUITER A, HAMES B, RUIZ R, et al. Determination of sugars, byproducts, and degradation products in liquid fraction process samples[R]. Golden, Colorado: National Renewable Energy Laboratory, 2016.
    [14] SUN X F, XU F, SUN R C, et al. Characteristics of degraded cellulose obtained from steam-exploded wheat straw [J]. Carbohydrate Research, 2005, 340: 97- 106.
    [15] SUN S N, CAO X F, SUN S L, et al. Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation[J]. Biotechnology for Biofuels, 2014, 7(1): 116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700