304L不锈钢在高温高压水中的腐蚀疲劳裂纹扩展行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Corrosion Fatigue Crack Growth Behavior of 304L Stainless Steel in High Temperature and High Pressure Water
  • 作者:陈凯 ; 杜东海 ; 陆辉 ; 张乐福
  • 英文作者:CHEN Kai;DU Donghai;LU Hui;ZHANG Lefu;Corrosion Laboratory for Nuclear Power Materials,Shanghai Jiao Tong University;
  • 关键词:304L不锈钢 ; 腐蚀疲劳 ; 裂纹扩展速率 ; 模型
  • 英文关键词:304L stainless steel;;corrosion fatigue;;crack growth rate;;model
  • 中文刊名:FSYF
  • 英文刊名:Corrosion & Protection
  • 机构:上海交通大学核材料腐蚀性能研究联合实验室;
  • 出版日期:2018-01-15
  • 出版单位:腐蚀与防护
  • 年:2018
  • 期:v.39;No.339
  • 基金:大型先进压水堆核电站重大专项资助(2010ZX06004-018)
  • 语种:中文;
  • 页:FSYF201801004
  • 页数:7
  • CN:01
  • ISSN:31-1456/TQ
  • 分类号:21-27
摘要
基于直流电压降方法(direct current potential drop,DCPD)测量得到了304L不锈钢在325℃空气和含氧超纯水中的疲劳裂纹扩展速率;采用FORD-ANDRESEN模型、Bechtel Bettis模型和PSI模型进行结果分析比较;用扫描电镜观察了断口形貌。结果表明:低频低载荷下,腐蚀对疲劳的加速作用高达1 000倍,高频高载荷下则只有1.5倍;FORD-ANDRESEN模型对于解释腐蚀疲劳机理和预测腐蚀疲劳裂纹扩展速率更加合理与准确,Bechtel Bettis模型和PSI模型可以对试验结果进行比较,但无法给出各种因素对裂纹扩展的影响;疲劳断口形貌观察到明显的疲劳辉纹,疲劳破坏形式为穿晶断裂。
        The fatigue crack growth rate of 304 LSS was measured at 325 ℃in air and oxygenous ultrapure water based on direct current potential drop(DCPD)method.Results were predicted and analyzed with FORD-ANDRESEN model,Bechtel Bettis model and PSI model.The fatigue fracture surface was observed by scanning electron microscopy(SEM).The results showed that the fatigue crack growth rate was accelerated as high as 1 000 xat lower frequency &lower load;while only 1.5 xat higher frequency & high load.FORD-ANDRESEN model was more proper and accurate for explaining the mechanism of corrosion fatigue and predicting the corrosion fatigue crack growth rate.Bechtel Bettis model and PSI model could estimate and compare the experimental results,but could give explanation of the effects of various parameters on crack growth.The fatigue fracture surfaces revealed obvious fatigue striations,and fatigue failure was transgranular attack.
引文
[1]KALNAUS S,FAN F,JIANG Y,et al.An experimental investigation of fatigue crack growth of stainless steel 304L[J].International Journal of Fatigue,2009,31(5):840-849.
    [2]CHEN X,JIN D,KIM K S.Fatigue life prediction of type 304stainless steel under sequential biaxial loading[J].International Journal of Fatigue,2006,28(3):289-299.
    [3]SMITH K V.Application of the dissipated energy criterion to predict fatigue crack growth of type 304stainless steel following a tensile overload[J].Engineering Fracture Mechanics,2011,78(18):3183-3195.
    [4]BABU M N,DUTT B S,VENUGOPAL S,et al.On the anomalous temperature dependency of fatigue crack growth of SS 316(N)weld[J].Materials Science and Engineering:A,2010,527(20):5122-5129.
    [5]JOHAN S P,MUKHOPADHYAY C K,JAYAKUMAR T,et al.Understanding fatigue crack propagation in AISI 316(N)weld using Elber′s crack closure concept:experimental results from GCMOD and acoustic emission techniques[J].International Journal of Fatigue,2007,29(12):2170-2179.
    [6]BOWLER N.Theory of four-point direct-current potential drop measurements on a metal plate[J].Research in Nondestructive Evaluation,2006,17(1):29-48.
    [7]ANDRESEN P L,HICKLING J,AHLUWALIA K S,et al.Effects of hydrogen on SCC growth rate of Ni alloys in high temperature water[J].Corrosion,2008,64(9):707-720.
    [8]ANDRESEN P L,MORRA M M.IGSCC of non-sensitized stainless steels in high temperature water[J].Journal of Nuclear Materials,2008,383:97-111.
    [9]CHOPRA O K,RAO A S.A review of irradiation effects on LWR core internal materials-IASCC susceptibility and crack growth rate of austenitic stainless steels[J].Journal of Nuclear Materials 2011(409):235-256.
    [10]DU D,CHEN K,YU L,et al.SCC crack growth rate of cold worked 316Lstainless steel in PWR environment[J].Journal of Nuclear Materials,2015,456:228-234.
    [11]SHOJI T,TAKAHASHI H,SUZUKI M,et al.A new parameter for characterizing corrosion fatigue crack growth[J].Journal of Engineering Materials and Technology,1981,103(4):298-304.
    [12]ANDRESEN P L,FORD F P.Modeling and life prediction of stress corrosion cracking in sensitized stainless steel in high-temperature water[J].Predictive Capabilities in Environmentally Assisted Cracking,1985(3):17-38.
    [13]ANDRESEN P L.Critical processes to model in predicting stress corrosion response in hot water[J].Corrosion Science,2005(10):610-629.
    [14]FORD F P,EMIGH P W.The prediction of the maximum corrosion fatigue crack propagation rate of the low alloy steel in oxygenated water system at288℃[J].Corrosion science,1985,25(8):673-692.
    [15]FORD F P.Quantitative prediction of environmentally assisted cracking[J].Corrosion,1996,52(5):375-395.
    [16]FORD F P,TAYLOR D F,ANDRESEN P L,et al.Corrosion assisted cracking of stainless steel and low alloy steels in LWR environments[R].Palo Alto:EPRI,1987.
    [17]ANDRESEN P L.Effects of temperature on crack growth rate in sensitized type 304stainless steel and alloy 600[J].Corrosion,1993,49(9):714-725.
    [18]LU Z,TAKEDA Y,SHOJI T.Some fundamental aspects of thermally activated processes involved in stress corrosion cracking in high temperature aqueous environments[J].Journal of Nuclear Materials,2008,383(1):92-96.
    [19]WIRE G L,EVANS W M,MILLS W J.Fatigue crack propagation of 304stainless steel in high temperature water:additional tests and data correlation[C]//ASME 2005Pressure Vessels and Piping Conference.[S.l.]:American Society of Mechanical Engineers,2005:207-222.
    [20]SEIFERT H P,RITTER S,LEBER H J.Corrosion fatigue crack growth behavior of austenitic stainless steels under light water reactor conditions[J].Corrosion Science,2012,55:61-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700