东北温带森林林分结构与生产力关系研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the relationship between forest structure and productivity of temperate forests in Northeast China
  • 作者:吴兆飞 ; 张雨秋 ; 张忠辉 ; 何怀江 ; 张春雨 ; 赵秀海
  • 英文作者:Wu Zhaofei;Zhang Yuqiu;Zhang Zhonghui;He Huaijiang;Zhang Chunyu;Zhao Xiuhai;Research Center of Forest Management Engineering of State Forestry and Grassland Administration,Beijing Forestry University;Jilin Provincial Academy of Forestry Sciences;
  • 关键词:温度 ; 降水 ; 林分优势高 ; 物种多样性 ; 结构多样性 ; 林分生产力 ; 结构方程模型
  • 英文关键词:temperature;;precipitation;;dominant height of stand;;species diversity;;structure diversity;;forest productivity;;structural equation model
  • 中文刊名:BJLY
  • 英文刊名:Journal of Beijing Forestry University
  • 机构:北京林业大学国家林业和草原局森林经营工程技术研究中心;吉林省林业科学研究院;
  • 出版日期:2019-05-15
  • 出版单位:北京林业大学学报
  • 年:2019
  • 期:v.41
  • 基金:国家重点研发计划重点专项项目(2017YFC0504005);; 国家自然科学基金项目(31670643);; 吉林省科技发展计划项目(20180519020JH)
  • 语种:中文;
  • 页:BJLY201905005
  • 页数:8
  • CN:05
  • ISSN:11-1932/S
  • 分类号:52-59
摘要
【目的】探讨林分结构与森林生产力之间的关系及其驱动机制,为合理改善林分结构,优化森林生态系统功能,提高林分生产力提供科学依据。【方法】以东北地区温带森林为研究对象,采用机械布点的方式在东北地区7座温带森林分布的主要山脉上设置了327个调查取样点,调查面积共计32.7 hm~2。研究以26 348株活立木的野外调查数据为基础,利用结构方程模型探讨了基于大尺度条件下物种多样性和结构多样性对森林生产力的作用路径和大小,分析了温度、降水和林分优势高与森林生产力之间的关系及其驱动机制。【结果】在结构方程模型中:(1)物种多样性和结构多样性与生产力之间的关系都呈显著正相关,且二者间有很强的相关性;(2)温度和降水对生产力没有直接影响,而是分别通过影响结构多样性和物种多样性作用于生产力;(3)林分优势高对生产力也无直接影响,通过影响林分结构作用于森林生产力,且影响比温度和降水更大。【结论】中国东北温带森林林分生产力的直接驱动因子是结构多样性和物种多样性,气候和林分优势高是通过作用于林分结构间接影响森林生产力。研究结果为东北地区温带森林的可持续经营和管理提供了理论依据,具有重要的现实意义。
        [Objective] The objectives of this paper is to study the relationship between forest structure and forest productivity and its driving mechanism, so as to improve the forest structure, optimize forest ecosystem function, and improve forest productivity. [Method] Then temperate forests in the Northeastern was taken as the research object and a network of 327 survey plots was established on the seven main mountain ranges distributed in temperate forests, with a total area of 32.7 hm~2. Based on the field survey data of 26 348 trees, the structural equation model(SEM) was used to study the path and strength of forest productivity based on species diversity and structure diversity under large-scale conditions. Besides, the relationship between climatic factors and forest productivity and their driving mechanism were also analyzed. [Results] (1) Both species diversity and structure diversity showed significant positive correlations with forest productivity, and these two factors were strongly correlated.(2) Temperature and precipitation have no direct impact on productivity, but instead act on productivity by adjusting structure diversity and species diversity.(3) Similarly, dominant height of stand put impacts on productivity by adjusting forest structure and showed stronger influence than temperature and precipitation. [Conclusion] Structure diversity and species diversity are direct driving factors for forest productivity in temperate forests in Northeast China, while climatic factors and dominant height of stand affect forest productivity by influencing forest structure. The results provide a theoretical basis for the sustainable management and management of temperate forests in Northeast China, showing important practical significance.
引文
[1]Piao S,Sitch S,Ciais P,et al.Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends[J].Global Change Biology,2013,19(7):2117-2132.
    [2]Ruiz-Benito P,Madrigal-Gonzalez J,Ratcliffe S,et al.Stand structure and recent climate change constrain stand basal area change in European forests:a comparison across boreal,temperate,and Mediterranean biomes[J].Ecosystems,2014,17(8):1439-1454.
    [3]Spathelf P,Van Der Maaten E,Van Der Maaten-Theunissen M,et al.Climate change impacts in European forests:the expert views of local observers[J].Annals of Forest Science,2014,71(2):131-137.
    [4]Charru M,Seynave I,HervéJ C,et al.Spatial patterns of historical growth changes in Norway spruce across western European mountains and the key effect of climate warming[J].Trees,2014,28(1):205-221.
    [5]Bosela M,?tefan?ík I,Petrá?R,et al.The effects of climate warming on the growth of European beech forests depend critically on thinning strategy and site productivity[J].Agricultural and Forest Meteorology,2016,222:21-31.
    [6]Burkhart H E,ToméM.Modeling forest trees and stands[M].Berlin:Springer Science&Business Media,2012.
    [7]Ratcliffe S,Liebergesell M,Ruiz-Benito P,et al.Modes of functional biodiversity control on tree productivity across the European continent[J].Global Ecology and Biogeography,2016,25(3):251-262.
    [8]Potter K M,Woodall C W.Does biodiversity make a difference?Relationships between species richness,evolutionary diversity,and aboveground live tree biomass across US forests[J].Forest Ecology and Management,2014,321:117-129.
    [9]Wu X,Wang X,Tang Z,et al.The relationship between species richness and biomass changes from boreal to subtropical forests in China[J].Ecography,2015,38(6):602-613.
    [10]Liang J,Crowther T W,Picard N,et al.Positive biodiversity-productivity relationship predominant in global forests[J/OL].Science,2016,354:aaf8957[2018-12-23].http://doi.org/10.1126/science.aaf8957.
    [11]Zhang Y,Chen H Y H,Taylor A R.Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees[J].Functional Ecology,2017,31(2):419-426.
    [12]Zhang Y,Chen H Y H.Individual size inequality links forest diversity and above-ground biomass[J].Journal of Ecology,2015,103(5):1245-1252.
    [13]Zhang Y,Chen H Y H,Reich P B.Forest productivity increases with evenness,species richness and trait variation:a global metaanalysis[J].Journal of Ecology,2012,100(3):742-749.
    [14]Forrester D I.The spatial and temporal dynamics of species interactions in mixed-species forests:from pattern to process[J].Forest Ecology and Management,2014,312:282-292.
    [15]Jucker T,Av?c?ri?ei D,B?rnoaiea I,et al.Climate modulates the effects of tree diversity on forest productivity[J].Journal of Ecology,2016,104(2):388-398.
    [16]D?nescu A,Albrecht A T,Bauhus J.Structural diversity promotes productivity of mixed,uneven-aged forests in southwestern Germany[J].Oecologia,2016,182(2):319-333.
    [17]谭凌照,范春雨,范秀华.吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系[J].植物生态学报,2017,41(11):1149-1156.Tan L Z,Fan C Y,Fan X H.Relationships between species diversity or community structure and productivity of woodyplants in a broadleaved Korean pine forest in Jiaohe,Jilin,China[J].Chinese Journal of Plant Ecology,2017,41(11):1149-1156.
    [18]王春晶.东北森林植物多样性分析及保护建议[D].哈尔滨:东北林业大学,2014.Wang C J.The analysis and conservation suggestion for plant diversity of northeastern China[D].Harbin:Northeast Forestry University,2014.
    [19]刘琪璟,孟盛旺,周华,等.中国立木材积表[M].北京:中国林业出版社,2017.Liu Q J,Meng S W,Zhou H,et al.Chinese timber table[M].Beijing:China Forestry Publishing House,2017.
    [20]吉林省立木材积、出材率表[S].吉林:吉林省林业厅,2015.Jilin Province standing volume,out-put table[S].Jilin:Jilin Provincial Forestry Department,2015.
    [21]黑龙江省立木材积表[S].哈尔滨:黑龙江省营林局,1981.Heilongjiang provincial standing volume table[S].Harbin:Heilongjiang Forestry Administration,1981.
    [22]Clutter J L.Compatible growth and yield models for loblolly pine[J].Forest Science,1963,9(3):354-371.
    [23]Skovsgaard J P,Vanclay J K.Forest site productivity:a review of the evolution of dendrometric concepts for even-aged stands[J].Forestry:an International Journal of Forest Research,2008,81(1):13-31.
    [24]Fox J.Applied regression analysis and generalized linear models[M].London:Sage Publications,2015.
    [25]Fahey R T,Fotis A T,Woods K D.Quantifying canopy complexity and effects on productivity and resilience in latesuccessional hemlock-hardwood forests[J].Ecological Applications,2015,25(3):834-847.
    [26]Wright I J,Reich P B,Atkin O K,et al.Irradiance,temperature and rainfall influence leaf dark respiration in woody plants:evidence from comparisons across 20 sites[J].New Phytologist,2006,169(2):309-319.
    [27]Schaphoff S,Reyer C P O,Schepaschenko D,et al.Tamm Review:observed and projected climate change impacts on Russia’s forests and its carbon balance[J].Forest Ecology and Management,2016,361:432-444.
    [28]Forrester D I,Ammer C,Annigh?fer P J,et al.Effects of crown architecture and stand structure on light absorption in mixed and monospecific Fagus sylvatica and Pinus sylvestris forests along a productivity and climate gradient through Europe[J].Journal of Ecology,2018,106(2):746-760.
    [29]郭艳荣,吴保国,刘洋,等.立地质量评价研究进展[J].世界林业研究,2012,25(5):47-52.Guo Y R,Wu B G,Liu Y,et al.Research progress of site quality evaluation[J].World Forestry Research,2012,25(5):47-52.
    [30]唐诚,王春胜,曾杰,等.立地指数-环境因子模型评价森林立地生产力研究进展[J].世界林业研究,2018,31(4):48-53.Tang C,Wang C S,Zeng J,et al.Advances in forest site productivity evaluation with relationship model of site index and environmental factors[J].World Forestry Research,2018,31(4):48-53.
    [31]Gonzalez-Benecke C A,Teskey R O,Dinon-Aldridge H,et al.Pinus taeda forest growth predictions in the 21st century vary with site mean annual temperature and site quality[J].Global Change Biology,2017,23(11):4689-4705.
    [32]PalahíM,Pukkala T,Kasimiadis D,et al.Modelling site quality and individual-tree growth in pure and mixed Pinus brutia stands in north-east Greece[J].Annals of Forest Science,2008,65(5):501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700