束-等离子体实验系统研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on beam-plasma experimental system
  • 作者:夏玉玺 ; 巫晓燕 ; 李伟
  • 英文作者:XIA Yuxi;WU Xiaoyan;LI Wei;College of Physical Science and Technology, Sichuan University;
  • 关键词:束-等离子体系统 ; 实验系统 ; 粒子模拟 ; 包络方程
  • 英文关键词:beam-plasma system;;experimental system;;particle simulation;;envelop equation
  • 中文刊名:SYJL
  • 英文刊名:Experimental Technology and Management
  • 机构:四川大学物理科学与技术学院;
  • 出版日期:2019-04-24 10:41
  • 出版单位:实验技术与管理
  • 年:2019
  • 期:v.36;No.272
  • 基金:国家自然科学基金项目(11775154);; 四川大学实验技术立项(2017);四川大学教育与教学建设立项(2018)
  • 语种:中文;
  • 页:SYJL201904023
  • 页数:6
  • CN:04
  • ISSN:11-2034/T
  • 分类号:102-107
摘要
建立了束-等离子体系统的物理模型,推导出电子束在均匀非磁化等离子体中的聚焦传输条件,根据聚焦传输理论确定一组工作参数,并运用Vsim等软件对该模型进行粒子模拟分析,分别得出此时电子束在等离子体通道中的聚焦传输轨迹、电磁场分布以及THz辐射情况,此时电子束几乎完全排开等离子体电子并形成离子通道。结果表明,理论分析与模拟相符合,初步论证了电子束密度可达10~(12)/cm~3,输出等离子体密度可达约10~(12)/cm~3,等离子体温度可达10 eV的束-等离子体实验系统的科学性和可行性,为首次开展新型综合性等离子体实验课程奠定了基础。
        The physical model of the beam-plasma system is established, and the focusing propagation conditions of electron beams in uniform non-magnetized plasma are derived. A set of working parameters are determined according to the focusing transmission theory, and the particle simulation analysis of the model is carried out by using other software such as Vsim. The focusing trajectory, electromagnetic field distribution and THzradiation of electron beam in plasma channel are obtained. At this time, the electron beam almost completely discharges the plasma electrons and forms an ion channel. The results show that the theoretical analysis is in agreement with the simulation. It is preliminarily demonstrated that the electron beam density can reach 10~(12)/cm~3, the output plasma density can reach 10~(12)/cm~3, and the plasma temperature can reach 10 eV, whose system is scientific and feasible It lays a foundation for the first new comprehensive Plasma Experiment course.
引文
[1] RIBOH J C,SALTZMAN B M,YANKE A B,et al.Effect of leukocyte concentration on the efficacy of platelet-rich plasma in the treatment of knee osteoarthritis[J].Am J Sports Med,2016 (44):792-800.
    [2] BOGDANOV T,BENOVA E.Theoretical parametric investigation of plasma sustained by traveling electromagnetic wave in coaxial configuration[J].Vacuum,2018(55):280-291.
    [3] TRAN M,JEONG H K.Modification of titanium dioxide by solution plasma[J].Journal of Physics and Chemistry of Solids,2018(121):292-297.
    [4] 窦志国,刘毅,邓友义.超声速燃烧室等离子体射流点火实验平台设计[J].实验技术与管理,2017,34(6):36-40.
    [5] 钱沐杨,陈小昌,李桂,等.大气压低温等离子体射流甲醇直接合成乙二醇新技术实验教学研究[J].实验技术与管理,2017,34(1):44-47.
    [6] 张建良,卢慧芬,赵建勇,等.分层次、跨学科综合性实验平台的探索与设计[J].实验技术与管理,2017,34(1):194-197.
    [7] TANJIA F,F R,D N S,et al.Formation and stability of a hollow electron beam in the presence of a plasma wake field driven by an ultra-short electron bunch[J].Nuclear Instruments and Methods in Physics Research A,2016,829(1):130-136.
    [8] 符斯列,陈俊芳.Langmuir 探针测量低温等离子体参数特性实验[J].实验室研究与探索,2010,29(3):4-7.
    [9] 陈希,谢文楷,刘盛纲.磁自聚焦电子注的空间轨迹及传输特性[J].电子学报,1999,27(6):16-18.
    [10] 高淑贞,蔡印,牛立刚,等.本科生开放性创新实验的探索与实践[J].实验室研究与探索,2018,37(7)):216-218.
    [11] GUPTA S,GANGWAR R K,SRIVASTAVA R.Diagnostics of Ar/N2 mixture plasma with detailed electron-impact argon fine-structure excitation cross sections[J].Spectrochimica Acta Part B,2018(149):203-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700