风力发电机组下行雷击风险计算方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Downward Lightning Risk Assessment Method Associated With Wind Turbine
  • 作者:黄胜鑫 ; 陈维江 ; 贺恒鑫 ; 边凯 ; 向念文 ; 时卫东 ; 何天宇 ; 顾建伟 ; 傅中
  • 英文作者:HUANG Shengxin;CHEN Weijiang;HE Hengxin;BIAN Kai;XIANG Nianwen;SHI Weidong;HE Tianyu;GU Jianwei;FU Zhong;China Electric Power Research Institute;State Grid Corporation of China;State Key Laboratory of Advanced Electromagnetic Engineering and Technology (Huazhong University of Science and Technology);School of Electrical and Automation, Hefei University of Technology;Electric Power Research Institute,State Grid Anhui Electric Power Company;
  • 关键词:风力发电机组 ; 下行雷击风险 ; 自洽先导起始发展模型 ; 机组年雷击次数
  • 英文关键词:wind turbine;;downward lightning risk assessment;;self-consistent leader inception and propagation model(SLIM);;annual lightning stroke number of wind turbine
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:中国电力科学研究院有限公司;国家电网公司;强电磁工程与新技术国家重点实验室(华中科技大学);合肥工业大学电气与自动化工程学院;国网安徽省电力公司电力科学研究院;
  • 出版日期:2019-06-06 15:11
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.623
  • 基金:国家电网公司总部科技项目(5442GY160050)~~
  • 语种:中文;
  • 页:ZGDC201912014
  • 页数:11
  • CN:12
  • ISSN:11-2107/TM
  • 分类号:166-176
摘要
风力发电机组年雷击事故次数是评估机组雷击防护水平、指导机组雷击防护系统设计和优化的重要指标。机组年雷击事故次数与机组年雷击次数有关。目前,广泛应用IEC标准中推荐的经验公式进行机组下行雷击风险评估。IEC推荐方法脱离雷击物理过程,无法反映雷电流幅值、机组几何形状等因素对机组雷击截收区域面积的影响。该文提出了一种基于自洽先导起始发展模型的风力发电机组下行雷击风险计算方法,该方法可以体现雷击接闪物理过程。验证计算表明方法计算所得机组年负极性下行雷击次数相比IEC推荐方法的计算结果更接近观测获得的机组实际年负极性下行雷击次数。利用该方法,进一步计算获得了机组容量与机组下行雷击风险之间的定量关系,并讨论了叶片旋转对机组下行雷击风险的影响。
        The annual average number of accidents associated with wind turbine lightning stroke is an important parameter to evaluate the level of wind turbine lightning protection and guide the design or improvement of wind turbine lightning protection systems. The number is a function of the wind turbine lightning risk. The method to assess the lightning risk of wind turbine recommended by IEC is applied widely, but the method is not related to the actual lightning physical process and can't reflect the influence of wind turbine geometric shape and lightning current waveform. A lightning risk assessment method associated with wind turbine based on self-consistent leader inception and propagation model(SLIM)was proposed in this paper. The method is based on the actual lightning attachment process. According to the verification calculation, the result given by the method presented in this paper was close to the field observation data. The effect of height associated with wind turbine and blade rotation on lightning risk of wind turbine were quantitatively discussed using the method proposed in this paper.
引文
[1]International Electrotechnical Commission.IEC 61400-24Wind Turbines-Part 24:Lightning protection[S].2010.
    [2]Garolera A C.Lightning protection of flap system for wind turbine blades[D].Technical University of Denmark,2014.
    [3]Becerra M,Cooray V.A self-consistent upward leader propagation model[J].Journal of Physics D:Applied Physics,2006,39(16):3708.
    [4]Becerra M,Cooray V.A simplified physical model to determine the lightning upward connecting leader inception[J].IEEE Transactions on Power Delivery,2006,21(2):897-908.
    [5]Becerra M,Cooray V.Time dependent evaluation of the lightning upward connecting leader inception[J].Journal of Physics D:Applied Physics,2006,39(21):4695.
    [6]Cooray V.On the attachment of lightning flashes to grounded structures with special attention to the comparison of SLIM with CVM and EGM[J].Journal of Electrostatics,2013,71(3):577-581.
    [7]陈维江,贺恒鑫,钱冠军,等.基于长间隙放电研究雷电屏蔽问题的进展[J].中国电机工程学报,2012,32(10):1-12.Chen Weijiang,He Hengxin,Qian Guanjun,et al.Review of the lightning shielding against direct lightning strokes based on laboratory long air gap discharges[J].Proceedings of the CSEE,2012,32(10):1-12(in Chinese).
    [8]陈维江,贺恒鑫,何俊佳,等.输电线路雷电先导发展三维仿真模型[J].中国电机工程学报,2014,34(36):6601-6612.Chen Weijiang,He Hengxin,HE Junjia,et al.On the3-dimentional leader progression model for the lightning shielding failure performance estimation of overhead transmission lines[J].Proceedings of the CSEE,2014,34(36):6601-6612(in Chinese).
    [9]贺恒鑫,陈维江,殷禹,等.特高压同塔双回路转角耐张塔雷电绕击防护[J].高电压技术,2016,42(11):3448-3455.He Hengxin,Chen Weijiang,Yin Yu,et al.Lightning shielding failure protection of the strained angled tower of double circuit UHV AC transmission lines[J].High Voltage Engineering,2016,42(11):3448-3455(in Chinese).
    [10]Long Mengni.On the attachment of lightning flashes to wind turbines[D].Stockholm:KTH Royal Institute of Technology,2016.
    [11]Becerra M,Long Mengni,Schulz W,et al.On the estimation of the lightning incidence to offshore wind farms[J].Electric power systems research,2018,157:211-226.
    [12]Zhang Yao,Zhang Li,Zhang Kaifang,et al.Dynamic striking distance and electrical geometrical model of wind turbine blades based on lightning physics[J].The Journal of Engineering,2017,2017(13):2298-2302.
    [13]任瀚文,郭子炘,马宇飞,等.雷击风机叶片的跃变击距特性与定量表征[J].电工技术学报,2017,32(15):216-224.Ren Hanwen,Guo Zixin,Ma Yufei,et al.Quantitative characterization of the striking saltus distance of wind turbine blade[J].Transactions of China Electrotechnical Society,2017,32(15):216-224(in Chinese).
    [14]马宇飞,张黎,闫江燕,等.风机叶片雷击上行先导的起始物理机制与临界长度判据[J].中国电机工程学报,2016,36(21):5975-5982.Ma Yufei,Zhang Li,Yan Jiangyan,et al.Inception mechanism of lightning upward leader from the wind turbine blade and a proposed critical length criterion[J].Proceedings of the CSEE,2016,36(21):5975-5982(in Chinese).
    [15]周歧斌,刘灿祥,程彧,等.风机叶片雷击附着区域数值仿真及防护[J].高电压技术,2017,43(8):2739-2745.Zhou Qibin,Liu Canxiang,Cheng Yu,et al.Numerical simulation and protection of wind turbine blade lightning attachment zones[J].High Voltage Engineering,2017,43(8):2739-2745(in Chinese).
    [16]Wang Yeqing,Hu Weifei.Investigation of the effects of receptors on the lightning strike protection of wind turbine blades[J].IEEE Transactions on Electromagnetic Compatibility,2017,59(4):1180-1187.
    [17]Bertelsen K,Erichsen H V,Jensen M V R S,et al.Application of numerical models to determine lightning attachment points on wind turbines[C]//Proceedings of the30th International Conference on Lightning and Static Electricity.Paries,France.2007:28-31.
    [18]Madsen S F,Erichsen H V.Numerical model to determine lightning attachment point distributions on wind turbines according to the revised IEC 61400-24[C]//Proceedings of the International Conference on Lightning and Static Electricity.Pittsfiled,USA.2009:15-17.
    [19]Cooray V.Lightning Electromagnetics[M].London:IETPublishers,2012:765-787.
    [20]Horváth T.Interception efficiency of lightning air termination systems constructed with rolling sphere method[C]//28th International Conference on Lightning Protection.Kanazawa,Japan:ICLP,2006.
    [21]Cooray V,Rakov V,Theethayi N.The lightning striking distance-Revisited[J].Journal of Electrostatics,2007,65(5-6):296-306.
    [22]Abdel-Salam M,Allen N L.Inception of corona and rate of rise of voltage in diverging electric fields[J].IEEProceedings A-Physical Science,Measurement and Instrumentation,Management and Education,1990,137(4):217-220.
    [23]Gallimberti I.The mechanism of long spark formation[J].Le Journal De Physique Colloques,1979,40(C7):C7-193-C7-250.
    [24]Goelian N,Lalande P,Bondiouclergerie A,et al.Asimplified model for the simulation of positive-spark development in long air gaps[J].Journal of Physics D:Applied Physics,1997,30(17):2441-2452.
    [25]MontanyàJ,van der Velde O,Williams E R.Lightning discharges produced by wind turbines[J].Journal of Geophysical Research Atmospheres,2014,119(3):1455-1462.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700