基于可再生能源制氢系统附加阻尼控制的电力系统次同步振荡抑制方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mitigation of Subsynchronous Oscillations Based on Renewable Energy Hydrogen Production System and Its Supplementary Damping Control
  • 作者:赵强 ; 张雅洁 ; 谢小荣 ; 张玉琼 ; 张东霞 ; 陈紫薇
  • 英文作者:ZHAO Qiang;ZHANG Yajie;XIE Xiaorong;ZHANG Yuqiong;ZHANG Dongxia;CHEN Ziwei;China Electric Power Research Institute;State Key Lab of Control and Simulation of Power Systems and Generation Equipment (Department of Electrical Engineering,Tsinghua University);
  • 关键词:可再生能源制氢 ; 次同步振荡 ; 附加阻尼控制 ; 抑制策略
  • 英文关键词:renewable energy hydrogen production;;subsynchronous oscillation;;additional damping control;;suppressing strategy
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:中国电力科学研究院有限公司;电力系统及发电设备控制与仿真国家重点实验室(清华大学电机系);
  • 出版日期:2019-07-05
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.624
  • 基金:国家重点研发计划项目(2017YFB0902000);; 国家电网公司科技项目(JS71-17-001)~~
  • 语种:中文;
  • 页:ZGDC201913002
  • 页数:9
  • CN:13
  • ISSN:11-2107/TM
  • 分类号:15-23
摘要
近年来,大规模新能源发电机组的并网运行增加了系统发生次同步振荡(subsynchronous oscillation,SSO)的风险。针对此问题,该文提出一种利用可再生能源制氢系统抑制新能源并网系统次同步振荡的方法。首先,根据可再生能源制氢系统的整体架构及其电解槽内部热动力和电化学动态特性,建立兆瓦级制氢装置的电磁暂态模型;进而,提出一种基于电解槽直流电压调制的附加阻尼控制方案,并对控制器参数进行多工况优化设计,提高制氢系统并网后对次同步振荡现象的抑制能力;最后,以新疆哈密实际发生过SSO事件的风电系统为原型,进行电磁暂态仿真分析。结果表明:提出的基于可再生能源制氢系统的附加阻尼控制方法能有效抑制风电并网系统的SSO,从而提供一种解决SSO问题的新思路。
        Recently, the increasing penetration of large-scale renewable energy generators increases the risk of subsynchronous oscillation(SSO) in the power system. To address this issue, this paper proposed a new method to mitigate SSO by using renewable energy hydrogen production system(HPS). Firstly, the configuration of HPS was introduced and an electromagnetic transient(EMT) model for MW-level HPS was established by taking the thermodynamic and electrochemical dynamics of its electrolyzer into account. Then,a supplementary damping control(SSDC) scheme was proposed to damping SSO by modulating the DC voltage of electrolyzer. SSDC was optimized over various operating conditions. Finally, the proposed model and control strategy were tested on the Hami wind power system, which experienced actual SSO incidents. EMT simulation results demonstrate that the HPS-based SSDC can mitigate the SSO successfully and thus offer a new solution to this dynamic issue.
引文
[1]陈国平,李明节,许涛,等.我国电网支撑可再生能源发展的实践与挑战[J].电网技术,2017,41(10):3095-3103.Chen Guoping,Li Mingjie,Xutao,et al.Practice and challenge of renewable energy development based on interconnected power grids[J].Power System Technology,2017,41(10):3095-3103(in Chinese).
    [2]李明节,于钊,许涛,等.新能源并网系统引发的复杂振荡问题及其对策研究[J].电网技术,2017,41(4):1035-1042.Li Mingjie,Yu Zhao,Xu Tao,et al.Study of complex oscillation caused by renewable energy integration and its solution[J].Power System Technology,2017,41(4):1035-1042(in Chinese).
    [3]谢小荣,刘华坤,贺静波,等.直驱风机风电场与交流电网相互作用引发次同步振荡的机理与特性分析[J].中国电机工程学报,2016,36(9):2366-2372.Xie Xiaorong,Liu Huakun,He Jingbo,et al.Mechanism and characteristics of subsynchronous oscillation caused by the interaction between full-converter wind turbines and AC systems[J].Proceedings of the CSEE,2016,36(9):2366-2372(in Chinese).
    [4]陈国平,李明节,许涛,等.关于新能源发展的技术瓶颈研究[J].中国电机工程学报,2017,37(1):20-26.Chen Guoping,Li Mingjie,Xu Tao,et al.Study on technical bottleneck of new energy development[J].Proceedings of the CSEE,2017,37(1):20-26(in Chinese).
    [5]Wang Liang,Xie Xiaorong,Jiang Qirong,et al.Investigation of SSR in practical DFIG-based wind farms connected to a series-compensated power system[J].IEEETransactions on Power Systems,2015,30(5):2772-2779.
    [6]Chen Wuhui,Xie Xiaorong,Wang Danhui,et al.Probabilistic stability analysis of subsynchronous resonance for series-compensated DFIG-based wind farms[J].IEEE Transactions on Sustainable Energy,2018,9(1):400-409.
    [7]王伟胜,张冲,何国庆,等.大规模风电场并网系统次同步振荡研究综述[J].电网技术,2017,41(4):1050-1060.Wang Weisheng,Zhang Chong,He Guoqing,et al.Overview of research on subsynchronous oscillations in large-scale wind farm integrated system[J].Power System Technology,2017,41(4):1050-1060(in Chinese).
    [8]Varma R K,Auddy S,Semsedini Y.Mitigation of subsynchronous resonance in a series-compensated wind farm using facts controllers[J].IEEE Transactions on Power Delivery,2008,23(3):1645-1654.
    [9]董晓亮,谢小荣,田旭.双馈风机定子侧变流器的附加阻尼抑制次同步振荡方法[J].高电压技术,2016,42(9):2785-2791.Dong Xiaoliang,Xie Xiaorong,Tian Xu.Sub-synchronous resonance mitigation scheme by stator side converter in doubly fed induction generator[J].High Voltage Engineering,2016,42(9):2785-2791(in Chinese).
    [10]陈中,杜文娟,王海风,等.基于阻尼转矩分析法的储能系统抑制系统低频振荡[J].电力系统自动化,2009,33(12):8-11.Chen Zhong,Du Wenjuan,Wang Haifeng,et al.Power system low-frequency oscillations suppression with energy storage system based on DTA[J].Automation of Electric Power Systems,2009,33(12):8-11(in Chinese).
    [11]史林军,陈中,王海风,等.应用飞轮储能系统阻尼电力系统低频振荡[J].电力系统自动化,2010,34(8):29-33.Shi Linjun,Chen Zhong,Wang Haifeng,et al.Damping of power system low-frequency oscillations with FESS[J].Automation of Electric Power Systems,2010,34(8):29-33(in Chinese).
    [12]刘红翠,王德林,李芸.SMES抑制电力系统功率振荡的控制策略研究[J].电网技术,2014,38(11):3128-3133.Liu Hongcui,Wang Delin,Li Yun.Research on control strategy to suppress power oscillation in power grid by superconducting magnetic energy storage[J].Power System Technology,2014,38(11):3128-3133(in Chinese).
    [13]赵静波,雷金勇,甘德强,等.电池储能装置在抑制电力系统低频振荡中的应用[J].电网技术,2008,32(6):93-99,108.Zhao Jingbo,Lei Jinyong,Gan Deqiang,et al.Application of battery energy storage devices in suppressing lowfrequency oscillation of power system[J].Power System Technology,2008,32(6):93-99,108(in Chinese).
    [14]Nistor S,Carr S,Sooriyabandara M.The island hydrogen project:Electrolytic generated hydrogen for automotive and maritime applications[J].IEEE Electrification Magazine,2018,6(1):55-60.
    [15]Sander M,Gehring R.LIQHYSMES-a novel energy storage concept for variable renewable energy sources using hydrogen and SMES[J].IEEE Transactions on Applied Superconductivity,2011,21(3):1362-1366.
    [16]袁铁江,董小顺,张增强,等.基于氢储能技术的双馈风力发电系统基本架构及其建模[J].高电压技术,2016,42(7):2100-2110.Yuan Tiejiang,Dong Xiaoshun,Zhang Zengqiang,et al.Architecture and modeling of doubly-fed wind power generation system based on hydrogen energy storage technology[J].High Voltage Engineering,2016,42(7):2100-2110(in Chinese).
    [17]蒋东方,武珍,毕金生,等.氢能系统的综合效益分析[J].电网与清洁能源,2011,27(8):69-73.Jiang Dongfang,Wu Zhen,Bi Jinsheng,et al.Comprehensive benefit analysis of hydrogen system[J].Power System and Clean Energy,2011,27(8):69-73(in Chinese).
    [18]Garcia-Torres F,Bordons C.Optimal economical schedule of hydrogen-based microgrids with hybrid storage using model predictive control[J].IEEE Transactions on Industrial Electronics,2015,62(8):5195-5207.
    [19]Ursúa A,Marroyo L,Gubía E,et al.Influence of the power supply on the energy efficiency of an alkaline water electrolyser[J].International Journal of Hydrogen Energy,2009,34(8):3221-3233.
    [20]Ursúa A,Sanchis P.Static-dynamic modelling of the electrical behaviour of a commercial advanced alkaline water electrolyser[J].International Journal of Hydrogen Energy,2012,37(24):18598-18614.
    [21]李荻.电化学原理[M].3版.北京:北京航空航天大学出版社,2008.Li Di.Electrochemical principle[M].3rd ed.Beijing:Beijing University of Aeronautics and Astronautics Press,2008(in Chinese).
    [22]肖湘宁,郭春林,高本锋,等.电力系统次同步振荡及其抑制方法[M].北京:机械工业出版社,2014.Xiao Xiangning,Guo Chunlin,Gao Benfeng,et al.Subsynchronous oscillation of power system and its suppression method[M].Beijing:China Machine Press,2014(in Chinese).
    [23]Liu Huakun,Xie Xiaorong,Wang Liang,et al.Optimal design of linear subsynchronous damping controllers for stabilising torsional interactions under all possible operating conditions[J].IET Generation,Transmission&Distribution,2015,9(13):1652-1661.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700