壁面微结构流动控制技术的减阻机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:On the mechanism of drag reduction of wall microstructure flow control technique
  • 作者:李恩田 ; 吉庆丰 ; 庞明军
  • 英文作者:LI Entian;JI Qingfeng;PANG Mingjun;School of Hydraulic Energy and Power Engineering,Yangzhou University;School of Petroleum Engineering,Changzhou University;
  • 关键词:流动控制 ; 壁面微结构 ; 减阻率 ; 雷诺应力 ; 湍流脉动强度
  • 英文关键词:flow control;;wall microstructure;;drag reduction rate;;Reynolds shear stress;;turbulent fluctuation intensity
  • 中文刊名:SLXB
  • 英文刊名:Journal of Hydraulic Engineering
  • 机构:扬州大学水利与能源动力工程学院;常州大学石油工程学院;
  • 出版日期:2018-06-19 09:58
  • 出版单位:水利学报
  • 年:2018
  • 期:v.49;No.501
  • 基金:国家自然科学基金项目(51376026);; 江苏省高校自然科学研究重大项目(15KJA470001);; 2017年江苏省高校中青年骨干教师境外研修计划
  • 语种:中文;
  • 页:SLXB201806014
  • 页数:8
  • CN:06
  • ISSN:11-1882/TV
  • 分类号:123-130
摘要
为了研究壁面微结构流动控制技术的减阻效应及其产生的原因,利用循环管路系统的方形管道进行了压降测定试验,并利用粒子成像测速仪测量了边界层内部结构和对应的参数。试验采用了沟槽和肋条两种不同类型的微结构壁面,每种形状的微结构各有3种不同的结构尺寸。试验研究结果表明:在一定的无量纲宽度s+范围内,6种不同的微结构壁面都具有减阻效果;减阻率随着s+的增大,呈现先增大后减小的趋势,其中沟槽壁面2的减阻效果最好,最大减阻率为9.90%;壁面微结构通过影响流场内部的涡结构、湍流脉动、雷诺切应力和平均流速等使得不同壁面微结构具有减阻效果。
        In the present work drag reduction and its causes of wall microstructure flow control techniquehave been investigated experimentally. Pressure drop tests were carried out on a closed rectangular ductand particle image velocimetry was used to measure inner structure and corresponding flow parameters ofboundary layer. Plates with micro-grooves or micro-riblets were fixed as the floor of the duck pipe. The re-sult shows that a notable decrease in drag reduction for microstructure surfaces can be seen at a certainrange of s+. The dag reduction rate increased first then decreased with the increase of s+,and a maximumrag-reduction of nearly 9.9 percent was acquired over the micro-grooves surface B. Microstructure can thick-en the boundary layer and weaken turbulent fluctuation intensity. What's more,Reynolds shear stress,androot-mean-square velocity both decreased.
引文
[1]BECHERT D W,BARTENWERFER M,HOPPE G,et al.Drag reduction mechanisms derived from shark skin[R]//Paper#ICAS-86-1.8.3,presented at 15th Congress of the International Council of Aeronautical Sciences,London,UK,September 7-12,1986.
    [2]CHOI H,MOIN P,KIM J.Direct numerical simulation of turbulent flow over riblets[J].Journal of Fluid Mechanics,1993,255(1):503-539.
    [3]WALSH M.Turbulent boundary layer drag reduction using riblets[J].American Institute of Aeronautics&Astronautics,2013,6(11):769-787.
    [4]WANG Z,GAO Q,WANG C,et al.An irrotation correction on pressure gradient and orthogonal-path integration for PIV-based pressure reconstruction[J].Experiments in Fluids,2016,57(6):1-16.
    [5]WANG C Y,GAO Q,WANG H P,et al.Divergence-free smoothing for volumetric PIV data[J].Experiments in Fluids,2016,57(1):1-23.
    [6]王晋军,兰世隆,苗福友.沟槽面湍流边界层减阻特性研究[J].中国造船,2001,42(4):1-5.
    [7]黄桥高,潘光,胡海豹,等.脊状表面航行器模型减阻特性的水洞实验研究[J].实验流体力学,2010,24(3):50-53.
    [8]DEAN B,BHUSHAN B.The effect of riblets in rectangular duct flow[J].Applied Surface Science,2012,258(8):3936-3947.
    [9]FLACK K A,SCHULTZ M P,BARROS J M,et al.Skin-friction behavior in the transitionally-rough regime[J].International Journal of Heat&Fluid Flow,2016,61:21-30.
    [10]BECHERT D W,BRUSE M,HAGE W,et al.Experiments on drag-reducing surfaces and their optimization with an adjustable geometry[J].Journal of Fluid Mechanics,1997,338:59-87.
    [11]王洪平,高琪,王晋军.基于层析PIV的湍流边界层涡结构统计研究[J].中国科学:物理学力学天文学,2015,45(12):73-86.
    [12]阮驰,孙传东,白永林,等.PIV系统水洞流场测量准确度与误差分析[J].光子学报,2008,37(10):2005-2008.
    [13]曹永飞,顾蕴松,程克明.垂直于流向的截面中2D-PIV测量误差分析[J].实验流体力学,2014,28(6):66-72.
    [14]董明哲,汪洋,蒋宁涛.PIV系统测量误差的实验评价方法以及实验参数的优化[J].实验流体力学,2005,19(2):79-83.
    [15]冯宾春,崔桂香,张兆顺,等.圆管湍流近壁结构的DPIV实验研究[J].水利学报,2003(11):7-12.
    [16]刘士和,张德辉,万军.湍流结构对粒子运动的作用[J].水利学报,1992(10):9-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700