用户名: 密码: 验证码:
高氮和低氮条件下玉米穗位叶持绿性状的QTL定位
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:QTL mapping for ear leaf stay-green in maize under high and low N conditions
  • 作者:李东亚 ; 王祎 ; 汤继华 ; 许恒 ; 谭金芳 ; 韩燕来
  • 英文作者:LI Dong-ya;WANG Yi;TANG Ji-hua;XU Heng;TAN Jin-fang;HAN Yan-lai;College of Resources and Environment, Henan Agricultural University;Collaborative Innovation Center of Henan Grain Crops;State Key laboratory of Wheat and Maize Crop Science;
  • 关键词:玉米 ; 单片段代换系 ; 氮水平 ; 持绿 ; QTL定位
  • 英文关键词:maize;;single segment substitution line;;N level;;stay-green;;QTL mapping
  • 中文刊名:ZWYF
  • 英文刊名:Journal of Plant Nutrition and Fertilizers
  • 机构:河南农业大学资源与环境学院;河南省粮食作物协同创新中心;省部共建小麦玉米国家重点实验室;
  • 出版日期:2019-01-25
  • 出版单位:植物营养与肥料学报
  • 年:2019
  • 期:v.25;No.124
  • 基金:国家自然科学基金项目(31601812);; 公益性行业(农业)科研专项(201503130);; 河南农业大学科技创新基金(KJCX2015A16)资助
  • 语种:中文;
  • 页:ZWYF201901013
  • 页数:8
  • CN:01
  • ISSN:11-3996/S
  • 分类号:119-126
摘要
【目的】玉米叶片持绿性与籽粒产量、品质性状密切相关,本研究利用单片段代换系群体,对高氮和低氮条件下的玉米穗位叶持绿性状进行了QTL定位,旨在为持绿相关基因的精细定位以及克隆相关主效QTL奠定基础。【方法】以氮效率差异显著的两个亲本许178和综3构建的172个玉米单片段代换系为研究材料,采用完全随机区组设计,在高氮(N 240 kg/hm~2)和低氮(N 75 kg/hm~2)条件下,进行了两年大田试验。以吐丝后第10天穗位叶的SPAD值作为玉米持绿性的表型值,根据代换系与亲本许178表型值的T-test结果,利用该群体的SSR遗传图谱,在P <0.01条件下定位持绿性状的QTL。【结果】在基因组范围内,两个氮水平下共定位53个穗位叶持绿QTL (贡献率为–2.45%~–22.65%)。上述QTL在玉米的10条染色体上均有分布,其中以第1染色体上检测到的数量最多(14个),第7染色体上检测到的数量最少(1个)。高氮条件下检测的QTL为29个,6个在两年试验条件下被重复检测,分别为qhnSG1d、qhnSG2a、qhnSG3a、qhnSG4a、qhnSG8b和qhnSG10c,其中qhnSG8b和qhnSG10c为高氮特异QTL,两年内QTL的贡献率分别为–4.47%、–9.17%、–9.46%和–5.05%;低氮条件下检测的QTL为16个,2个QTL在两年大田环境被重复检测,分别为qlnSG1f和qlnSG2b。其中qlnSG1f为低氮特异QTL,两年内QTL贡献率分别为–9.70%和–10.85%。【结论】通过对玉米穗位叶持绿性状分析,将高氮特异持绿染色体片段定位到umc1077~umc2350区段内,低氮特异染色体片段定位到umc1013~umc2047区段内。
        【Objectives】Stay-green of maize leaves is closely associated with the grain yield and quality. In this study, QTLs for ear leaf stay-green in maize were identified by using single segment substitution lines(SSSLs) to provide theoretical support for the fine mapping and cloning of major QTLs.【Methods】Two years field experiments with a randomized complete block design were conducted, and a total of 172 maize SSSLs from a cross between a N-efficient inbred line Xu178 and a N-inefficient inbred line Zong3 were used as test materials.Nitrogen levels of 240 kg/hm~2(high) and 75 kg/hm~2(low) were applied for each material. The SPAD values of 10 days-old ear leaves after silking were measured to evaluate their stay-green feature. The T-test method was used to analysis the phenotype differences between SSSL and Xu178, and the QTLs for stay-green were mapped in the SSR genetic linkage map at P < 0.01.【Results】In the genome range, 53 QTLs for ear leaf stay-green were detected under the two nitrogen levels and effectively resulted in contribution rates of –2.45% to –22.65%.These QTLs were unevenly distributed in all the 10 chromosomes of maize, up to 14 QTLs were detected in chromosome 1, while only one QTL was detected in chromosome 7. Under high nitrogen condition, a total of29 QTLs were detected, and in which six QTLs including qhnSG1 d, qhnSG2 a, qhnSG3 a, qhnSG4 a, qhnSG8 b and qhnSG10 c were detected simultaneously under the two-year experimental condition. Here, qhnSG8 b and qhnSG10 c represented QTLs with high N-specific characteristics, and effective contribution rates were –4.47%,–9.17%, –9.46% and –5.05% in two years, respectively. Under low nitrogen condition, a total of 16 QTLs were detected, and 2 QTLs of which, qlnSG1 f and qlnSG2 b, were detected repeatedly under the two-year experimental conditions. qlnSG1 f was a low N-specific QTL, and made effective contribution rates of –9.70% and –10.85%in two years, respectively.【Conclusions】The high N-specific stay-green QTL is localized in the segment of umc1077-umc2350 and the low N-specific stay-green QTL is localized in the segment of umc1013-umc2047.
引文
[1]中华人民共和国国家统计局.中国统计年鉴. 2013[M].北京:中国统计出版社,2013.National Bureau of Statistics of People's Republic of China. China statistical yearbook. 2013[M]. Beijing:China Statistics Press, 2013.
    [2]佟屏亚.玉米高产是一个永恒的课题[J].作物杂志,2004,(1):10-12.Tong P Y. High yield of corn is an eternal topic[J]. Crops, 2004,(1):10-12.
    [3]戴景瑞.我国玉米生产发展的前景及对策[J]·作物杂志,1998,(5):7-12.Dai J R. Prospects and countermeasures of corn production in China[J]. Crops,1998,(5):7-12.
    [4]武良,张卫峰,陈新平,等.中国农田氮肥投人和生产效率[J].中国土壤与肥料,2016,(4):76-83.Wu L, Zhang W F, Chen X P, et al. Nitrogen fertilizer input and nitrogen use efficiency in Chinese farmland[J]. Soils and FertilizersSciences in China, 2016,(4):76-83.
    [5]张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008, 45(5):915-924.Zhang F S, Wang J Q, Zhang W F, et al. Nutrient use efficiency of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5):915-924.
    [6] Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968):1008-1010.
    [7] Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438):459-462.
    [8] Zhang W, Dou Z, He P, et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China[J]. Proceedings of the National Academy of Sciences of the United States of America,2013, 110(21):8375-8380.
    [9] Xu G, Fan X, Miller A J. Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology, 2012, 63:153-182.
    [10] Schepers J S, Francis D D, Vigil M, et al. Comparison of corn leaf nitrogen concentration and chlorophyll meter readings[J].Communications in Soil Science and Plant Analysis, 1992,23(17-20):2173-2187.
    [11] Mi G, Chen F, Zhang F. Physiological and genetic mechanisms for nitrogen-use efficiency in maize[J]. Journal of Crop Science and Biotechnology,2005, 10(2):57-63.
    [12] Thomas H, Smart C M. Crops that stay green[J]. Annals of Applied Biology, 1993, 123:193-219.
    [13]刘道宏.植物叶片的衰老[J].植物生理学通讯1983,(2):14-19.Liu D H. Aging of plant leaves[J]. Plant Physiology Communications, 1983,(2):14-19.
    [14] Thomas H, Howarth C J. Five ways to stay green[J]. Journal of Experimental Botany, 2000, 51:329-337.
    [15] Subudhi P K, Rosenow D T, Nguyen H T. Quantitative trait loci for the stay green trait in sorghum(Sorghum bicolor L. Moench):consistency across genetic backgrounds and environments[J].Theoretical and Applied Genetics, 2000, 101:733-741.
    [16] Haussmann B, Mahalakshmi V, Reddy B, et al. QTL mapping of stay-green in two sorghum recombinant inbred populations[J].Theoretical and Applied Genetics, 2002, 106(1):133-142.
    [17]何萍,金继运.保绿型玉米的营养生理研究进展[J].玉米科学,2000, 8(4):41-44.He P, Jin J Y. Research advances in nutrient physiology of stay green in maize[J]. Journal of Maize Sciences, 2000, 8(4):41-44.
    [18] Gregersen P L, Culetic A, Boschian L, et al. Plant senescence and crop productivity[J]. Plant Molecular Biology, 2013, 82(6):603-622.
    [19] van Oosterom E J, Chapman S C, Borrell A K, et al. Functional dynamics of the nitrogen balance of sorghum.Ⅱ. Grain filling period[J]. Field Crops Research,2010, 115(1):29-38.
    [20] Addy S, Jr. Niedziela C E, Reddy M R Effect of nitrogen fertilization on stay-green and senescent sorghum hybrids in sand culture[J].Journal of Plant Nutrition, 2010, 33(2):185-199.
    [21] Kosgey J R, Moot D J, Fletcher A L, et al. Dry matter accumulation and post-silking N economy of stay-green maize(Zea mays L.)hybrids[J]. European Journal of Agronomy, 2013, 51:43-52.
    [22]李明媚.玉米叶片持绿性评价指标的研究[D].成都:四川农业大学硕士学位论文,2011.Li M M. The study of stay-green trait evaluation index in maize leaf[D]. Chengdu:MS Thesis of Sichuan Agricultural University,2011.
    [23]向春阳,田秀平,董炳友,等.氮高效玉米主要性状的遗传分析[J].遗传,2005, 27(3):387-390.Xiang C Y, Tian X P, Dong B Y, et al. Heredity analysis of main characters of nitrogen use efficiency in maize[J]. Hereditas, 2005,27(3):387-390.
    [24] Lim J, Paek N. Quantitative trait locus mapping and candidate gene analysis for functional stay-green trait in rice[J]. Plant Breeding and Biotechnology, 2015, 3(2):95-107.
    [25]吴永升.玉米谷氨酰胺合成酶基因Gln1-3、Gln1-4氮利用效率关联性分析[D].北京:中国农业科学院博士学位论文,2009.Wu Y S. Association analysis of glutamine synthetase genes, Glnl-3and Glnl-4, with nitrogen use efficiency in maize[D]. Beijing:PhD Dissertation of Chinese Academy of Agricultural Sciences, 2009.
    [26]何坤辉,常立国,李亚楠,等.供氮和不供氮条件下玉米穗部性状的QTL定位[J].植物营养与肥料学报,2017,23(1):91-100.He K H, Chang L G, Li Y N, et al. QTL mapping of ear traits of maize with and without N input[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(1):91-100.
    [27]郭向阳,陈建军,卫晓轶,等.施氮与不施氮条件下玉米开花期相关性状的QTL定位[J].植物营养与肥料学报,2017, 23(2):297-303.Guo X Y, Chen J J, Wei X Y, et al. QTL mapping of flowering related traits of maize with and without nitrogen application[J].Journal of Plant Nutrition and Fertilizer, 2017, 23(2):297-303.
    [28]王祎,汤继华,付延磊,等.不同氮水平下玉米苗期根系形态和氮吸收量的QTL定位[J].植物营养与肥料学报,2017, 23(4):942-956.Wang Y, Tang J H, Fu Y L, et al. Mapping of QTLs for root morphology and nitrogen uptake of maize under different nitrogen conditions[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4):942-956.
    [29]郑洪建.玉米叶片保绿性遗传分析和QTL定位[D].上海:上海交通大学博士学位论文,2008.Zheng H J. Genetic analysis and QTL mapping of stay-green traits in maize(Zea mays L.)[D]. Shanghai:PhD Dissertation of Shanghai Jiaotong University, 2008.
    [30]刘宗华,王春丽,汤继华,等.氮胁迫对不同玉米自交系若干农艺性状和产量的影响[J].河南农业大学学报,2006, 40(6):573-577.Liu Z H, Wang C L, Tang J H, et al. Effect of low nitrogen stress on several agronomy characters and grain yield of different maize inbreds[J]. Journal of Henan Agricultural University, 2006, 40(6):573-577.
    [31]毛克举,李卫华,付志远,等.玉米自交系许178背景的综3染色体单片段代换系的构建[J].河南农业大学学报,2013, 47(1):6-9.Mao K J, Li W H, Fu Z Y, et al. Development of a set of single segment substitution lines of an elite inbred line Zong 3 on the genetic background Xu 178 in maize(Zea mays L.)[J]. Journal of Henan Agricultural University, 2013, 47(1):6-9.
    [32] Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL[J]. Genetics,1995,141(3):1147-1162.
    [33] Mccouch S R, Cho Y G, Yano M, et al. Report on QTL nomenclature[J]. Rice Genetics Newsletter, 1997, 14:11-13.
    [34] Ma B L, Dwyer L M. Nitrogen uptake and use of two contrasting maize hybrids differing in leaf senescence[J]. Plant and Soil,1998,199(2):283-291.
    [35]方永丰,李永生,白江平,等.玉米持绿相关QTL整合图谱构建及一致性QTL区域内候选基因发掘[J].草业学报,2012, 21(4):175-185.Fang Y F, Li Y S, Bai J P, et al. Construction of intergration QTL map and identification of candidate genes for stay-green in maize[J].Acta Prataculturae Sinica, 2012, 21(4):175-185.
    [36]刘宗华,谢惠玲,王春丽,等.氮胁迫和非胁迫条件下玉米不同时期叶绿素含量的QTL分析[J].植物营养与肥料学报,2008, 14(5):845-851.Liu Z H, Xie H L, Wang C L, et al. QTL analysis of chlorophyll content of maize under N-stress and no N-stress at different development stages[J]. Plant Nutrition and Fertilizer Science, 2008,14(5):845-851.
    [37]王爱玉,张春庆.玉米叶绿素含量的QTL定位[J].遗传,2008,30(8):1083-1091.Wang A Y, Zhang C Q. QTL mapping for chlorophyll content in maize[J]. Hereditas,2008, 30(8):1083-1091.
    [38] Zheng H J, Wu A Z, Zheng C C, et al. QTL mapping of maize(Zea mays)stay-green traits and their relationship to yield[J]. Plant Breeding, 2009, 128(1):54-62.
    [39]冯万军,窦晨,牛旭龙,等.玉米谷氨酰胺合成酶基因家族的生物信息学分析[J].玉米科学,2015, 23(1):51-57.Feng W J, Dou C, Niu X L, et al. Bioinformatics analysis of glutamine synthetase gene family in maize[J]. Journal of Maize Sciences,2015, 23(1):51-57.
    [40] Yang Z, Li X, Zhang N, et al. Mapping and validation of the quantitative trait loci for leaf stay-green-associated parameters in maize[J]. Plant Breeding, 2017,136(2):188-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700