基于UPLC-MS/MS联用微透析技术的三七总皂苷在帕金森病小鼠模型中的药动学和药效学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Pharmacokinetics and pharmacodynamics study of Panax notoginseng saponins in mice with Parkinson's disease by using UPLC-MS/MS combined with microdialysis
  • 作者:李新悦 ; 吴玉梅 ; 任静 ; 马丽 ; 刘静静 ; 张兵 ; 郭盼 ; 刘志东
  • 英文作者:LI Xin-yue;WU Yu-mei;REN Jing;MA Li;LIU Jing-jing;ZHANG Bing;GUO Pan;LIU Zhi-dong;Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education,Tianjin University of Traditional Chinese Medicine;Tianjin State Key Laboratory of Modern Chinese Medicine Province and Ministry Co-Established State Key Laboratory Cultivation Base, Tianjin University of Traditional Chinese Medicine;
  • 关键词:三七总皂苷 ; 药动学 ; 药效学 ; 帕金森病 ; 微透析技术 ; 氨基酸
  • 英文关键词:Panax notoginseng saponins;;pharmacokinetics;;pharmacodynamics;;Parkinson's disease;;microdialysis;;amino acids
  • 中文刊名:ZCYO
  • 英文刊名:Chinese Traditional and Herbal Drugs
  • 机构:天津中医药大学现代中药发现与制剂技术教育部工程中心;天津中医药大学天津市现代重点实验室-省部共建国家重点实验室培育基地;
  • 出版日期:2019-07-08 10:19
  • 出版单位:中草药
  • 年:2019
  • 期:v.50;No.648
  • 基金:天津市自然科学基金项目(16ZXHLGX00170)
  • 语种:中文;
  • 页:ZCYO201913018
  • 页数:8
  • CN:13
  • ISSN:12-1108/R
  • 分类号:128-135
摘要
目的探究1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)诱导的帕金森病(PD)模型小鼠以三七总皂苷干预后,脑微透析液中三七皂苷R1(R1)、人参皂苷Rg1(Rg1)和氨基酸神经递质的含量变化。方法给小鼠ip MPTP造成PD小鼠模型,经iv三七总皂苷(PNS)溶液后,采用微透析技术采集脑微透析液。将样品分为2部分,一部分采用UPLC-MS/MS对R1和Rg1进行药动学研究,另一部分采用氨基酸柱前衍生化和HPLC-FLD进行药效学研究。结果小鼠iv PNS后,脑微透析液中R1的峰浓度(Cmax)为(35.48±24.4)ng/mL,Rg1的Cmax为(75.61±41.35)ng/m L。R1和Rg1的达峰时间(tmax)均为1.75 h。R1和Rg1的药时曲线下面积(AUC)分别为(100.12±84.29)ng·h/m L和(218.84±144.73)ng·h/m L。且给予PNS后的PD模型小鼠体内天冬氨酸和谷氨酸浓度降低,甘氨酸、牛磺酸和γ-氨基丁酸浓度增加。结论 PNS能一定程度透过血脑屏障(BBB)进入脑内,调节PD模型小鼠体内氨基酸水平的失衡,进而发挥神经保护作用。
        Objective To investigate the changes in the content of notoginsenoside R1(R1), ginsenoside Rg1(Rg1) and amino acid neurotransmitters in brain micro dialysate after the treatment with Panax notoginseng saponins(PNS) solution in Parkinson's disease(PD) model mice induced by 1-methylmethyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP). Methods Mice were injected intraperitoneally with MPTP to induce PD mice model. After intravenous injection of PNS solution, brain micro dialysate was collected by microdialysis technique. The sample was divided into two parts, one was subjected to pharmacokinetic study of R1 and Rg1 by UPLC-MS/MS, and the other part for pharmacodynamics study which was done by pre-column derivatization of the amino acids and HPLC-FLD analysis. Results After iv administration of PNS to the mice, the maximum CSF concentration was(35.48 ±24.4) ng/mL for R1 and(75.61 ± 41.35) ng/mL for Rg1. The time to reach maximum concentration was found 1.75 h both for R1 and Rg1. The AUC value of R1 and Rg1 were(100.12 ± 84.29) ng·h/m L and(218.84 ± 144.73) ng·h/mL, respectively. Moreover, the levels of aspartic acid and glutamic acid were reduced, and glycine, taurine and γ-aminobutyric acid levels were increased in PD model mice treated with PNS in comparison with model group. Conclusion PNS can enter the brain through the blood brain barrier(BBB) to some extent, and regulate the imbalance of amino acid level in PD model mice, so as to display the neuroprotective effect and its therapeutic value.
引文
[1]Tong Q,Xu Q,Xia Q,et al.Correlations between plasma levels of amino acids and nonmotor symptoms in Parkinson’s disease[J].J Neural Transm,2015,122(3):411-417.
    [2]Tysnes O,Storstein A.Epidemiology of Parkinson’s disease[J].J Neural Transm,2017,124(8):901-905.
    [3]Zhang Y,Feng T,Xu P,et al.Recent advance in the relationship between excitatory amino acid transporters and Parkinson’s disease[J].Neural Plasticity,2016,2016(3):1-8.
    [4]Emir U E,Tuite P J,Oz,G.Elevated pontine and putamenal GABA levels in mild-moderate Parkinson disease detected by 7 tesla proton MRS[J].PLoS One,2012,7(1):e30918.
    [5]Sun Z,Jia J,Gong X,et al.Inhibition of glutamate and acetylcholine release in behavioral improvement induced by electroacupuncture in parkinsonian rats[J].Neurosci Lett,2012,520(1):32-37.
    [6]中国药典[S].一部.2015.
    [7]Liang W,Leung P,Yew D.Panax notoginseng:Adouble-edged sword in haemostasis?[J].Altern Integr Med,2013,2(9):e110.
    [8]Wu H,Liu H,Bai J,et al.Simultaneous determination of notoginsenoside R1,ginsenoside Rg1,ginsenoside Re and20(S)protopanaxatriol in beagle dog plasma by ultra high performance liquid mass spectrometry after oral administration of a Panax notoginseng,saponin preparation[J].J Chromatogr B,2015,974:42-47.
    [9]Uzayisenga R,Ayeka P A,Wang Y.Anti-diabetic potential of Panax notoginseng saponins(PNS):A review[J].Phytother Res:PTR,2014,28(4):510-516.
    [10]Ng T B.Pharmacological activity of sanchi ginseng(Panax notoginseng)[J].J Pharm Pharmacol,2010,58(8):1007-1019.
    [11]Xu L,Chen W F,Wong M S.Ginsenoside Rg1 protects dopaminergic neurons in a rat model of Parkinson’s disease through the IGF-I receptor signalling pathway[J].Br J Pharmacol,2010,158(3):738-748.
    [12]Song L,Xu M B,Zhou X L,et al.A preclinical systematic review of ginsenoside-Rg1 in experimental Parkinson’s disease[J].Oxid Med Cell Long,2017,2017(3):1-14.
    [13]Huang X P,Tan H,Chen B Y,et al.Combination of total astragalus extract and total Panax notoginseng saponins strengthened the protective effects on brain damage through improving energy metabolism and inhibiting apoptosis after cerebral ischemia-reperfusion in mice[J].Chin J Integr Med,2017,23(6):445-452.
    [14]Vogt Weisenhorn D M,Giesert F,Wurst W.Diversity matters-heterogeneity of dopaminergic neurons in the ventral mesencephalon and its relation to Parkinson’s disease[J].J Neurochem,2016,139(S1):8-26.
    [15]武倩,叶敏,蒲小平.中药提取物CTE对MPTP所致帕金森病小鼠模型的神经保护作用[J].中国新药杂志,2011,20(4):355-358.
    [16]任静,吴玉梅,马丽,等.三七总皂苷微乳对帕金森模型小鼠行为学及纹状体多巴胺含量的影响[J].天津中医药大学学报,2018,37(3):234-238.
    [17]Yang Z Z,Li J,Li S X,et al.Effect of ginkgolide B on striatal extracellular amino acids in middle cerebral artery occluded rats[J].J Ethnopharmacol,2011,136(1):117-122.
    [18]贺旭,刘英飞,王伟,等.三七总皂苷对全脑缺血大鼠海马脑水肿及GFAP表达的影响[J].中草药,2017,48(22):4695-4700.
    [19]贺旭,葛金文,黄俊,等.三七总皂苷对全脑缺血成年大鼠侧脑室室管膜区神经再生的影响[J].中草药,2016,47(9):1535-1540.
    [20]Oster S,Radad K,Scheller D,et al.Rotigotine protects against glutamate toxicity in primary dopaminergic cell culture[J].Eur J Pharmacol,2014,724:31-42.
    [21]Lange K W,Kornhuber J,Riederer P.Dopamine/glutamate interactions in Parkinson’s disease[J].Neurosci Biobehav Rev,1997,21(4):393-400.
    [22]Iwasaki Y,Ikeda K,Shiojima T,et al.Increased plasma concentrations of aspartate,glutamate and glycine in Parkinson’s disease[J].Neurosci Lett,1992,145(2):175-177.
    [23]Jimenez-Jimenez F J,Alonso-Navarro H,Garcia-Martin E,et al.Cerebrospinal fluid biochemical studies in patients with Parkinson’s disease:Toward a potential search for biomarkers for this disease[J].Front Cellr Neurosci,2014,8(369):1-31
    [24]Engelborghs S,Marescau B,Deyn P P D.Amino acids and biogenic amines in cerebrospinal fluid of patients with Parkinson’s disease[J].Neurochem Res,2003,28(8):1145-1150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700