碱激发矿粉海水海砂混凝土与CFRP筋粘结性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:STUDY ON THE BOND PERFORMANCE BETWEEN CFRP BARS AND ALKALI-ACTIVATED SLAG SEAWATER AND SEA SAND CONCRETE
  • 作者:徐金金 ; 杨树桐 ; 刘治宁
  • 英文作者:XU Jin-jin;YANG Shu-tong;LIU Zhi-ning;Department of Civil Engineering,College of Engineering,Ocean University of China;Qingdao Ocean University Construction Engineering Testing and Appraisal Center;
  • 关键词:建筑材料 ; 碱激发矿粉混凝土 ; 拉拔试验 ; 粘结性能 ; 破坏形态
  • 英文关键词:building materials;;alkali-activated slag concrete;;pull test;;bond performance;;failure mode
  • 中文刊名:GCLX
  • 英文刊名:Engineering Mechanics
  • 机构:中国海洋大学工程学院土木工程系;青岛海大建设工程检测鉴定中心;
  • 出版日期:2019-06-20
  • 出版单位:工程力学
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金项目(51778591)
  • 语种:中文;
  • 页:GCLX2019S1029
  • 页数:9
  • CN:S1
  • ISSN:11-2595/O3
  • 分类号:179-187
摘要
该文通过试验分析研究了碱激发矿粉海水海砂混凝土与碳纤维筋(Carbon Fiber Reinforced Polymer)筋的粘结性能。分别考虑了碱激发矿粉淡水河砂混凝土(FRASC)、碱激发矿粉淡水海砂混凝土(FSASC)、碱激发矿粉海水河砂混凝土(SRASC)和碱激发矿粉海水海砂混凝土(SSASC)四种碱激发矿粉混凝土(ASC),并与钢筋的粘结性能进行了对比。试验中分别采用直径为8 mm的CFRP筋和HRB400带肋钢筋,粘长分别为2.5 d、5 d、7.5 d、10 d和15 d(d为筋的直径)。结果表明:粘长为15 d的试件,CFRP筋的试件全部劈裂破坏,钢筋粘长为10 d、15 d的试件全部为钢筋拉断破坏;粘长为2.5 d的CFRP筋试件将筋表面的脱模带拉断而出现第二个峰值;粘结滑移曲线可分为微滑移阶段、滑移阶段、剥离阶段、软化阶段和残余阶段。
        To study the bond performance between CFRP bars and alkali-activated slag seawater and sea sand concrete, pull-out tests were carried out for 200 specimens with different types of bars(CFRP bars and steel bars),different bond lengths(2.5 d, 5 d, 7.5 d, 10 d and 15 d) and four types of concrete including fresh water and river sand alkali-activated slag concrete(FRASC), fresh water and sea sand alkali-activated slag concrete(FSASC),seawater and river sand alkali-activated slag concrete(SRASC) and seawater and sea sand alkali-activated slag concrete(SSASC). In the test, all specimens with CFRP bars and bonding lengths of 15 d exhibited splitting failure of the concrete, whereas those with steel bars and bond lengths of 10 d and 15 d exhibited tensile fracture of the steel bars. The loading stage for the specimens with CFRP bars and bond lengths of 2.5 d has a second peak because the external bundle band of the CFRP bars was snapped. The bond-slip curve can be divided into five stages, that is, the micro slip stage, slide stage, stripping stage, softening stage and residual stage.
引文
[1]史才军,巴维尔·克利文科,黛拉·罗伊.碱-激发水泥和混凝土[M].北京:化学工业出版社,2006.Shi Caijun,Krivenko P,Roy D.Alkali-activated cements and concretes[M].Beijing:Chemical Industry Press,2006.(in Chinese)
    [2]Wang S D,Scrivener K L.Hydration products of alkali activated slag cement[J].Cement and Concrete Research,1995,25(3):561―571.
    [3]Yang C H,Wu F,Chen K.Research on set retarder of high and super high strength alkali-activated slag cement and concrete[J].Key Engineering Materials,2011,477:164―169.
    [4]Bilek V,Hurta J,Done P,et al.Development of alkali-activated concrete for structures-Mechanical properties and durability[J].Perspectives in Science,2016,7:190―194.
    [5]Zhang J,Shi C J,Zhang Z H,et al.Durability of alkali-activated materials in aggressive environments:Areview on recent studies[J].Construction and Building Materials,2017,152:598―613.
    [6]姜正平,明维.碱激发矿渣蒸压混凝土中钢筋早期锈蚀状况[J].建筑材料学报,2016,21(2):222―227.Jiang Zhengping,Ming Wei.Early corrosion behavior of steel bars embedded in the autoclave cured alkaliactivated slag concrete[J].Journal of Building Materials,2016,21(2):222―227.(in Chinese)
    [7]施锦杰,邓晨皓,张亚梅.钢筋在碱激发矿渣砂浆中的早起腐蚀行为[J].建筑材料学报,2016,19(6):969―975.Shi Jinjie,Deng Chenhao,Zhang Yamei.Early corrosion behavior of rebars enbedded in the alkali-activated slag mortar[J].Journal of Building Materials,2016,19(6):969―975.(in Chinese)
    [8]Li Y L,Zhao X L,Raman Singh R K,et al.Thermal and mechanical properties of alkali-activated slag paste,mortar and concrete utilising seawater and sea sand[J].Construction and Building Materials,2018,159:704―724.
    [9]Ravikumar D,Neithalath N.Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure[J].Cement and Concrete Research,2013,47(5):31―42.
    [10]Li Y L,Zhao X L,Raman Singh R K,et al.Experimental study on seawater and sea sand concrete filled GFRP and stainless steel tubular stub columns[J].Thin-Walled Structures,2016,106:390―406.
    [11]Li Y L,Zhao X L,Raman Singh R K,et al.Tests on seawater and sea sand concrete-filled CFRP,BFRP and stainless steel tubular stub columns[J].Thin-Walled Structures,2016,108:163―184.
    [12]Wang Z,Zhao X L,Xian G,et al,Durability study on interlaminar shear behaviour of basalt-,glass-and carbon-fibre reinforced polymer(B/G/CFRP)bars in sea water sea sand concrete environment[J].Construction and Building Materials,2017,156:985―1004.
    [13]Wang Z,Zhao X L,Xian G,et al.Long-term durability of basalt-and glass-fibre reinforced polymer(BFRP/GFRP)bars in seawater and sea sand concrete environment[J].Construction and Building Materials,2017,139:467―487.
    [14]Castel A,Foster S J.Bond strength between blended slag and Class F fly ash geopolymer concrete with steel reinforcement[J].Cement and Concrete Research,2015,72:48―53.
    [15]Bilek V,BonczkováS,Hurta J,et al.Bond strength between reinforcing steel and different types of concrete[J].Procedia Engineering,2017,190:243―247.
    [16]Laskar S M,Talukdar S.Preparation and tests for workability,compressive and bond strength of ultra-fine slag based geopolymer as concrete repairing agent[J].Construction and Building Materials,2017,154:176―190.
    [17]Tekle B H,Khennane A,Kayali O.Bond behaviour of GFRP reinforcement in alkali activated cement concrete[J].Construction and Building Materials,2017,154:972―982.
    [18]Tekle B H,Khennane A,Kayali O.Bond of spliced GFRP reinforcement bars in alkali activated cement concrete[J].Engineering Structures,2017,147:740―751.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700