热挤压态Cu-17Ni-2.5Sn-1.5Al合金的显微组织及强化机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and Strengthening Mechanism of Hot-Extruded Cu-17Ni-2.5Sn-1.5Al Alloy
  • 作者:罗保民 ; 李道喜 ; 赵超 ; 罗宗强 ; 王智 ; 杨超 ; 张卫文
  • 英文作者:LUO Baomin;LI Daoxi;ZHAO Chao;LUO Zongqiang;WANG Zhi;YANG Chao;ZHANG Weiwen;Guangdong Key Laboratory for Processing and Forming of Advanced Metallic Materials,South China University of Technology;School of Mechanical and Automotive Engineering,South China University of Technology;
  • 关键词:Cu-Ni-Sn合金 ; 热挤压 ; 显微组织 ; 强化机制
  • 英文关键词:Cu-Ni-Sn alloy;;hot extrusion;;microstructure;;strengthening mechanism
  • 中文刊名:GXGC
  • 英文刊名:Materials for Mechanical Engineering
  • 机构:华南理工大学广东省金属新材料制备与成形重点实验室;华南理工大学机械与汽车工程学院;
  • 出版日期:2019-04-20
  • 出版单位:机械工程材料
  • 年:2019
  • 期:v.43;No.368
  • 基金:广东省自然科学基金团队项目(2015A030312003);; 广东省应用型科技研发专项资金资助项目(2016B090931002)
  • 语种:中文;
  • 页:GXGC201904001
  • 页数:6
  • CN:04
  • ISSN:31-1336/TB
  • 分类号:5-9+28
摘要
对铸造态Cu-17Ni-2.5Sn-1.5Al合金依次进行930℃×2.5h均匀化退火处理和950℃热挤压,研究了热挤压态合金的显微组织和拉伸性能,分析了其强化机制。结果表明:热挤压态合金的组织发生明显细化,平均晶粒尺寸约为32μm,基体组织中存在弥散分布的球形Ni3Al相,其直径约为10nm;热挤压态合金的抗拉强度达922MPa,屈服强度为779 MPa;合金中存在细晶强化、固溶强化以及第二相析出强化等3种强化机制,且以固溶强化为主,固溶强化占总强化效果的56%;铝元素主要起固溶强化和第二相析出强化作用。
        Homogenization annealing treatment at 930 ℃ for 2.5 hand hot extrusion at 950 ℃ were conducted on as-cast Cu-17 Ni-2.5 Sn-1.5 Al alloy in sequence.The microstructure and tensile properties of the hotextruded alloy were studied,and the strengthening mechanism was analyzed.The results show that the microstructure of the hot-extruded alloy was refined obviously to average grain size of about 32μm.Spherical Ni3 Al phase with a diameter of about 10 nm dispersed in the matrix structure.The ultimate tensile strength of the hotextruded alloy was 922 MPa and the yield strength was 779 MPa.The alloy had three types of strengthening mechanism,namely refinement crystal strengthening,solid solution strengthening and second phase precipitation strengthening.The solid solution strengthening played a main role and accounted for 56% of the total strengthening effect.Aluminum played a solid solution strengthening role and a second phase precipitation strengthening role.
引文
[1]郑史烈,吴年强,曾跃武,等.高弹性导电合金Cu-Ni-Sn的研究现状[J].材料科学与工程,1997,15(3):61-65.
    [2]HAN S Z,KIM H I,LEE J M,et al.Study of heat effect on the microstructure and mechanical workability of continuously cast Cu-9Ni-6Sn alloys[J].Journal of the Korean Institute of Metals and Materials,1999,37(7):882-886.
    [3]KRATOCHV L P,MENCL J,PE ICKA J,et al.The structure and low temperature strength of the age hardened Cu-Ni-Sn alloys[J].Acta Metallurgica,1984,32(9):1493-1497.
    [4]MIKI M,OGINO Y.Influence of solution-treatment conditions on the cellular precipitation in Si-doped Cu-10Ni-8Sn alloy[J].Materials Transactions,JIM,1991,32(12):1135-1140.
    [5]GAO M Q,CHEN Z N,KANG H J,et al.Effects of Nb addition on the microstructures and mechanical properties of a precipitation hardening Cu-9Ni-6Sn alloy[J].Materials Science and Engineering:A,2018,715:340-347.
    [6]MIKI M,OGINO Y.Effects of addition of B and P on the cellular precipitation in Ni-Sn and Cu-Ni-Sn alloys[J].Transactions of the Japan Institute of Metals,1984,25(9):611-619.
    [7]ZHAO C,ZHANG W W,WANG Z,et al.Improving the mechanical properties of Cu-15Ni-8Sn alloys by addition of titanium[J].Materials,2017,10(9):1038.
    [8]王艳辉,汪明朴,洪斌.Cu-15Ni-8Sn-0.4Si合金时效过程研究[J].机械工程材料,2003,27(11):15-17.
    [9]张美华,江伯鸿,徐祖耀.Cu-15Ni-8Sn合金Spinodal分解动力学及Nb的影响[J].材料科学进展,1991,5(2):106-112.
    [10]张利衡.添加Mn和Cr对Cu-9Ni-6Sn合金组织与性能的影响[J].上海有色金属,2003,24(3):112-119.
    [11]张利衡.添加Fe对Cu-9Ni-6Sn合金组织与性能的影响[J].上海有色金属,2000,21(3):112-121.
    [12]邓忠民.Y对Cu-9Ni-6Sn合金分解速率及性质的影响[J].中国有色金属学报,1992,2(4):72-75.
    [13]刘洋,罗远辉,王力军.Cu-15Ni-8Sn弹性合金的研究及发展趋势[J].金属功能材料,2013,20(2):52-56.
    [14]LEE J M,LEE J H,HAN S Z,et al.Hot deformation behaviors of Cu-6Ni-2Sn and Cu-6Ni-2Sn-0.6Si-0.6Zn alloys[J].Journal of the Korean Institute of Metals and Materials,2000,38(3):427-433.
    [15]RHU J C,KIM S S,HAN S Z,et al.Mechanical properties of Cu-6Ni-2Mn-2Sn-xAl alloys[J].Scripta Materialia,1999,42(1):83-89.
    [16]AKBARI-FAKHRABADI A,MAHMUDI R,GERANMAYEH A R,et al.Impression creep behavior of a Cu-6Ni-2Mn-2Sn-2Al alloy[J].Materials Science and Engineering:A,2012,535:202-208.
    [17]GOTO M,HAN S Z,KIM C J,et al.Effects of trace zirconium on the initiation and propagation behavior of fatigue cracks in Cu-6Ni-2Mn-2Sn-2Al alloy[J].Materials Letters,2008,62(17/18):2832-2835.
    [18]HAN S,SOHN K,KIM C,et al.Tensile anisotropy in CuNi-Mn-Sn-Al alloys[J].Metallurgical and Materials Transactions A,2004,35(2):465-469.
    [19]王艳辉.Cu-15Ni-8Sn-XSi合金和Cu-9Ni-2.5Sn-1.5Al-0.5Si合金中的相变及其对合金性能的影响[D].长沙:中南大学,2004.
    [20]MARSHALL G J.Microstructural development in commercial Cu-Ni-Al-Mn alloy[J].Metal Science,1984,18(12):553-560.
    [21]CHRISTOFIDOU K A,ROBINSON K J,MIGNANELLI PM,et al.The effect of heat treatment on precipitation in the Cu-Ni-Al alloy Hiduron130[J].Materials Science and Engineering:A,2017,692:192-198.
    [22]SIERPI'NSKI Z,GRYZIECKI J.Phase transformations and strengthening during ageing of CuNi10Al3alloy[J].Materials Science and Engineering:A,1999,264(1/2):279-285.
    [23]FIELD D,BRADFORD L,NOWELL M,et al.The role of annealing twins during recrystallization of Cu[J].Acta Materialia,2007,55(12):4233-4241.
    [24]KUMAR M,SCHWARTZ A J,KING W E.Microstructural evolution during grain boundary engineering of low to medium stacking fault energy FCC materials[J].Acta Materialia,2002,50(10):2599-2612.
    [25]GOTTSTEIN G.Physical foundations of materials science[M].Heidelberg:Springer Berlin Heidelberg,2004:423-474.
    [26]NAKANISHI K,SUZUKI H.Analysis of the grain size dependence of the yield stress in copper-aluminum and copper-nickel alloys[J].Transactions of the Japan Institute of Metals,1974,15(6):435-440.
    [27]TODA-CARABALLO I,RIVERA-DAZ-DEL-CASTILLO PE J.Modelling solid solution hardening in high entropy alloys[J].Acta Materialia,2015,85:14-23.
    [28]LEI Q,XIAO Z,HU W P,et al.Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy[J].Materials Science and Engineering:A,2017,697:37-47.
    [29]ASHCROFT N W,MERMIN N D.Solid state physics[M].Philadelphia:Saunders College,1976.
    [30]ˇCIEK L,KRATOCHVL P,SMOLA B.Solid solution hardening of copper crystals[J].Journal of Materials Science,1974,9(9):1517-1520.
    [31]MARTIENSSEN W,WARLIMONT H.Springer handbook of condensed matter and materials data[M].Heidelberg:Springer Berlin Heidelberg,2006.
    [32]MABUCHI M,HIGASHI K.Strengthening mechanisms of Mg-Si alloys[J].Acta Materialia,1996,44(11):4611-4618.
    [33]STAKER M R,HOLT D L.The dislocation cell size and dislocation density in copper deformed at temperatures between 25and 700℃[J].Acta Metallurgica,1972,20(4):569-579.
    [34]GLADMAN T.Precipitation hardening in metals[J].Materials Science and Technology,1999,15(1):30-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700