热容式量热计动态特性优化方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on dynamic characteristics optimization method of the heat capacity calorimeter
  • 作者:郭雨岩 ; 徐春冬 ; 孔德仁 ; 章天平
  • 英文作者:Guo Yuyan;Xu Chundong;Kong Deren;Zhang Tianping;School of Mechanical Engineering, Nanjing University of Science and Technology;
  • 关键词:热容式量热计 ; 热流密度 ; 模型阶次 ; 热毁伤
  • 英文关键词:heat capacity calorimeter;;heat flux density;;model order;;thermal damage
  • 中文刊名:YQXB
  • 英文刊名:Chinese Journal of Scientific Instrument
  • 机构:南京理工大学机械工程学院;
  • 出版日期:2019-01-15
  • 出版单位:仪器仪表学报
  • 年:2019
  • 期:v.40
  • 基金:装备预先研究(KO01172)项目资助
  • 语种:中文;
  • 页:YQXB201901018
  • 页数:8
  • CN:01
  • ISSN:11-2179/TH
  • 分类号:145-152
摘要
针对爆炸场热毁伤测试的需求,提出一种基于改进模型的热容式量热计动态特性优化方法。在量热计数学模型构建的过程中,考虑高阶项影响,建立高阶项改进模型,并在考虑热电偶热耗散影响的情况下,采用数值仿真的方式,分析该高阶模型对量热计动态特性的影响。仿真结果显示,量热计响应速度及工作频带随模型阶次的增加而增加,且在二阶时增加幅度最大;量热计阶跃响应信号能量主要集中在15 Hz以内,且模型阶次越高阶跃响应信号高频分量越丰富。使用热容式量热计测试热风枪出风口热流密度,实验结果表明,相较于传统数学模型,二阶改进模型响应曲线的上升时间减小150 ms左右,改进后数学模型可正确反映入射热流变化趋势。
        In order to meet the requirements of thermal damage test in explosion field, an optimization method of dynamic characteristics of heat capacity calorimeter is proposed based on improved model. Considering the influence of high order terms in mathematical modeling of calorimeter, an improved model with higher order terms is established. The influence of the thermal dissipation of thermocouple on the dynamic characteristics of calorimeter is analyzed by numerical simulation. The simulation results show that the response speed and working frequency band of calorimeter increase with the increase of model order, and the increase is the maximum while the order of the model equals two. The energy of step response signal of the calorimeter mainly concentrates within 15 Hz, and the higher the model order, the richer the high frequency components of step response signal. A calorimeter is used as a heat sensitive element to test the heat flux of the outlet of the hot air gun. Experimental results indicate that, compared with the traditional mathematical model, the rising time of the response curve of the second-order improved model decreases by about 150 ms, and the improved mathematical model can correctly reflect the variation trend of the incident heat flow.
引文
[1] 闫潇敏,苏健军,李芝绒,等. 坑道内温压炸药的爆炸热效应研究[J]. 火工品, 2015(1): 22- 25.YAN X M, SU J J, LI ZH R, et al. Experimental study on explosive thermal effect of thermal-baric explosives in tunnel[J]. Initiators & Pyrotechnics, 2015(1): 22- 25.
    [2] 姬建荣,苏健军,李芝绒,等. WRe5/26热电偶对爆炸产物的热响应分析[J]. 火炸药学报, 2008,31(1): 26- 29.JI J R, J SU J J, LI R Z, et al. Analysis of hot response of WRe5/26 thermocouple to explosive products[J]. Chinese Journal of Explosives and Propellants,2008,31(1): 26- 29.
    [3] 赵志宁,王辰. 新型弹药热辐射毁伤效应研究[J]. 军械工程学院学报, 2015,27(1): 15-18.ZHAO ZH N, WANG CH. Research on damage effect of new type ammunition thermal radiation[J]. Journal of Ordnance Engineering College,2015,27(1): 15-18.
    [4] 黄磊,何中其,李春光,等. 热通量传感器在爆炸场热辐射测试中的应用[J]. 火炸药学报, 2011,34(5): 38- 42.HUANG L, HE ZH Q, LI CH G, et al. Application of heat flux microsensor in radiation measurement of blasting field[J]. Chinese Journal of Explosives and Propellants, 2011,34(5): 38- 42.
    [5] 陈爱艳,范锦彪,李玲玲. 爆炸场热通量与温度的理论与实验研究[J]. 弹箭与制导学报, 2015, 35(5): 69-71, 75.CHEN AI Y, FAN J B, LI L L. The theoretical and experimental research between heat flux and temperature in blasting field[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(5): 69-71, 75.
    [6] ASTARITA T, DE L L, CARDONE G, et al. Heat flux sensors for infrared thermography in convective heat transfer[J].Sensors,2014,14(11):21065- 21116.
    [7] 石友安,曾磊,钱炜祺,等. 测热试验中瞬态热流的反演研究[J]. 工程热物理学报, 2013,34(12): 2366- 2370.SHI Y A, CENG L, QIAN W Q, et al. Research on dynamic heat flux estimation in experiment[J]. Journal of Engineering Thermophysics, 2013,34(12): 2366- 2370.
    [8] 曾磊,桂业伟,贺立新,等. 镀层式同轴热电偶数据处理方法研究[J]. 工程热物理学报, 2009, 30(4): 661- 664.CENG L, GUI Y W, HE L X, et al. Study on data processing methods for coaxial-thermal-couple heat-flux sensor[J]. Journal of Engineering Thermophysics, 2009, 30(4): 661- 664.
    [9] 李强,刘济春,孔荣宗. 耐冲刷薄膜铂电阻热流传感器研制[J]. 电子测量与仪器学报, 2017, 31(4): 623- 629.LI Q, LIU J CH, KONG R Z. Development of anti-erosion platinum thin film resistance thermal sensor[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(4): 623- 629.
    [10] 许伟明,李瑜煜,方浩,等. 针对热电材料的高精度宽范围电阻测量电路[J]. 电子测量技术, 2016, 39(2): 14-17.XU W M, LI Y Y, FANG H, et al. Measurement circuit of resistance with wide range and high precision for thermoelectric material[J]. Electronic Measurement Technology, 2016, 39(2): 14-17.
    [11] 杨庆涛,白菡尘,张涛,等. 快速响应热流/温度传感器设计与特性分析[J]. 兵工学报, 2014,35(6): 927-934.YANG Q T, BAI H CH, ZHANG T, et al. Design and response characteristics analysis of a fast-response sensor for temperature and heat flux measurement[J]. Act Armamentarii, 2014,35(6): 927-934.
    [12] 方俊,张翠平. 基于Abaqus的热流传感器非稳态传热研究[J]. 仪器仪表学报, 2018,39(1): 152-161.FANG J, ZHANG C P. Study on unsteady heat transfer of heat flux sensor based on Abaqus[J]. Chinese Journal of Scientific Instrument, 2018,39(1): 152-161.
    [13] EWING J, GIFFORD A, HUBBLE D, et al. A direct-measurement thin-film heat flux sensor array[J]. Measurement Science and Technology, 2010, 21(10): 105201.
    [14] HUBBLE D, DILLER T. Development and evaluation of the time-resolved heat and temperature array[J]. Journal of Thermal Science and Engineering Applications, 2010.
    [15] 曾磊,桂业伟,王安龄,等. 激波风洞驻点热流测量误差机理及其不确定度研究[J]. 实验流体力学, 2015,29(5): 15- 25.CENG L, GUI Y W, WANG AN L, et al. Study on error mechanism and uncertainty assessment of heat flux measurement in shock tunnel [J]. Journal of Experiments in Fluid Mechanics,2015,29(5): 15- 25.
    [16] BENTZ D P, FLYNN D R, KIM J H, et al. A slug calorimeter for evaluating the thermal performance of fire resistive materials[J]. Fire and Materials, 2006, 30(4): 257- 270.
    [17] HIDALGO J P, MALUK C, COWLARD A, et al. A thin skin calorimeter (TSC) for quantifying irradiation during large-scale fire testing[J]. International Journal of Thermal Sciences, 2017(112): 383-394.
    [18] 郭雨岩,孔德仁. 热沉冷却式薄壁量热计设计及分析[J]. 仪器仪表学报, 2017, 38(7): 1698-1704.GUO Y Y, KONG D R. Design and analysis of the heat sink cooling thin-skin calorimeter[J]. Chinese Journal of Scientific Instrument,2017, 38(7): 1698-1704.
    [19] 姜韬,孔德仁,郭雨岩. 基于红外探测的新型热流密度传感器设计[J]. 国外电子测量技术, 2017, 36(11): 38- 42.JIANG T, KONG D R, GUO Y Y. Design of a new type of an infrared heat flux density sensor[J]. Foreign Electronic Measurement Technology, 2017, 36(11): 38- 42.
    [20] HUBBLE D O, DILLER T E. A hybrid method for measuring heat flux[J]. Journal of Heat Trasfer, 2009,132(3):031602.
    [21] VEGA T, LATTIMER B Y, DILLER T E. Temperature predictions using hybrid heat flux gage measurements[J]. Fire Technology, 2015,51(3):723-746.
    [22] ZHOU J, ZHANG Y, CHEN J K, et al. Inverse heat conduction using measured back surface temperature and heat flux[J].Journal of Thermophysics and Heat Transfer,2010,24(1):95-103.
    [23] DENG S, HWANG Y. Applying neural networks to the solution of forward and inverse heat conduction problems[J]. International Journal of Heat and Mass Transfer, 2006, 49(25- 26): 4732- 4750.
    [24] SEGALL A E. Solutions for the correction of temperature measurements based on beaded thermocouples[J]. International Journal of Heat & Mass Transfer, 2001, 44(15): 2801- 2808.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700