酸和谷胱甘肽的双重响应性聚合物胶束负载光敏剂用于肿瘤细胞的光动力治疗
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Acid and GSH Dual-Stimuli Response Polymer Micelles Loaded Photosensitizers for Photodynamic Therapy of Tumor Cells
  • 作者:王秋生 ; 曹红亮 ; 杲云
  • 英文作者:WANG Qiusheng;CAO Hongliang;GAO Yun;Shanghai Key Laboratory of Advanced Polymeric Materials,School of Meterials Science and Engineering,East China University of Science and Technology;
  • 关键词:逆向增强-原子转移自由基聚合 ; 响应释放 ; 光动力治疗
  • 英文关键词:DE-ATRP;;response release;;photodynamic therapy
  • 中文刊名:HLDX
  • 英文刊名:Journal of East China University of Science and Technology
  • 机构:华东理工大学材料科学与工程学院上海市先进聚合物材料重点实验室;
  • 出版日期:2018-12-07 15:25
  • 出版单位:华东理工大学学报(自然科学版)
  • 年:2019
  • 期:v.45
  • 语种:中文;
  • 页:HLDX201903010
  • 页数:8
  • CN:03
  • ISSN:31-1691/TQ
  • 分类号:78-85
摘要
将大分子引发剂溴代聚乙二醇单甲醚(PEG2KBr)和酸响应的单体二(2-丙烯酰氧基乙氧基)-(4-甲氧基苯基)甲烷(ACD)通过逆向增强-原子转移自由基聚合(DE-ATRP)得到新型的两亲性嵌段共聚物PEG-b-PACDs,再利用滴水法自组装形成纳米胶束及载有二氢卟吩e6(Ce6)的纳米胶束。通过核磁共振氢谱(~1H-NMR)、动态光散射(DLS)、透射电子显微镜(TEM)等对聚合物的结构及胶束粒径和形貌进行了测试表征,并采用噻唑蓝(MTT)法验证了载有Ce6的胶束对细胞的毒性。结果表明,聚合物可自组装成均一的球形胶束,负载Ce6后载药量可达到6.04%;在模拟肿瘤微环境的条件下,载药胶束具有酸、谷胱甘肽(GSH)两重响应性,并且有着良好的载药缓释性能;细胞毒性实验证明了该载药胶束对癌细胞具有很好的光动力治疗(PDT)效果。
        Amphiphilic block copolymer polyethylene glycol-b-di(2-acryloyloxy ethoxy-[4-methoxy-phenyl]methane)(PEG-b-PACDs) was successfully synthesized by deactivation enhanced atom transfer radical polymerization(DE-ATRP) with brominated polyethylene glycol(PEG2 KBr) as a macromolecular initiator and di(2-acry-loyloxy ethoxy)-[4-methoxy-phenyl]methane as an acid-cleavable divinyl(ACD) monomers. The polymer was self-assembled by drip water method to form micelles, and the drug chlorin e6(Ce6) was loaded into micelles to generate drug-loaded micelles. The structural characteristics of the polymer were analyzed by nuclear magnetic resonance hydrogen spectroscopy(~1H-NMR). The polymer with acetal structure could be hydrolyzed to aldehydes and alcohols under acidic conditions. The polymer retains olefinic bond, thus had a novel glutathione(GSH) responsive through the Michael addition reaction between GSH and olefinic bond. The size and morphology of the self-assembled blank micelles and Ce6-loaded micelles were characterized by Dynamic Light Scattering(DLS) and transmission electron microscope(TEM), which showed that both blank micelles and Ce6-loaded micelles can form uniform spherical micelles. The drug loading content of Ce6-loaded micelles could reach 6.04%. The sustained release of Ce6 from Ce6-loaded micelles in vitro clearly showed that Ce6-loaded micelles exhibited dual-stimuli responses by acid and GSH leading to controlled drug release behavior. In addition, the cytotoxicity of the drug-loaded micelles was verified by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide(MTT) assay. The cytotoxicity experiments also demonstrated that the Ce6-loaded micelles had a good photodynamic therapy(PDT) effect on cancer cells.
引文
[1]ALEKSANDROWICZ R,TACIAK B,KROL M.Drug delivery systems improving chemical and physical properties of anticancer drugs currently investigated for treatment of solid tumors[J].Journal of Physiology and Pharmacology,2017,68(2):165-174.
    [2]ASHLEY C E,CARNES E C,PHILLIPS G K,et al.The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers[J].Nature Materials,2011,10(5):389-397.
    [3]BAE Y,FUKUSHIMA S,HARADA A,et al.Design of environment-sensitive supramolecular assemblies for intracellular drug delivery:Polymeric micelles that are responsive to intracellular pH change[J].Angewandte ChemieInternational Edition,2003,42(38):4640-4643.
    [4]BAE Y,NISHIYAMA N,FUKUSHIMA S,et al.Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property:Tumor permeability,controlled subcellular drug distribution,and enhanced in vivo antitumor efficacy[J].Bioconjugate Chemistry,2005,16(1):122-130.
    [5]杨李影,郭睿,戎宗明.线性-树枝状共聚物载药微球的制备、表征及体外释放[J].华东理工大学学报(自然科学版),2017,43(1):50-55.
    [6]郭睿,陈明宇,范霄宇,等.生物可降解哑铃状高分子共聚物替莫唑胺载药微球的制备与表征[J].华东理工大学学报(自然科学版),2014,40(5):555-561.
    [7]BOWN S G,ROGOWSKA A Z,WHITELAW D E,et al.Photodynamic therapy for cancer of the pancreas[J].Gut,2002,50(4):549-557.
    [8]YANG K,HU L L,MA X X,et al.Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles[J].Advanced Materials,2012,24(14):1868-1872.
    [9]DANG J J,HE H,CHEN D L,et al.Manipulating tumor hypoxia toward enhanced photodynamic therapy(PDT)[J].Biomaterials Science,2017,5(8):1500-1511.
    [10]AGOSTINIS P,BERG K,CENGEL K A,et al.Photodynamic therapy of cancer:An update[J].CA:A Cancer Journal for Clinicians,2011,61(4):250-281.
    [11]GHEEWALA T,SKWOR T,MUNIRATHINAM G.Photosensitizers in prostate cancer therapy[J].Oncotarget,2017,8(18):30524-30538.
    [12]JUARRANZ A,JAEN P,SANZ-RODRIGUEZ F,et al.Photodynamic therapy of cancer:Basic principles and applications[J].Clinical&Translational Oncology,2008,10(3):148-154.
    [13]BUGAJ A M.Targeted photodynamic therapy:A promising strategy of tumor treatment[J].Photochemical&Photobiological Sciences,2011,10(7):1097-1109.
    [14]CHENG Y H,CHENG H,JIANG C X,et al.Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy[J].Nature Communications,DOI:10.1038/ncomms9785.
    [15]XU L,LIU L C,LIU F,et al.Photodynamic therapy of oligoethylene glycol dendronized reduction-sensitive porphyrins[J].Journal of Materials Chemistry B,2015,3(15):3062-3071.
    [16]AIED A,GLYNN B,CAO H L,et al.A fluorescently labeled,hyperbranched polymer synthesized from DE-ATRP for the detection of DNA hybridization[J].Polymer Chemistry,2012,3(2):332-334.
    [17]CHENG Y,SAMIA A C,MEYERS J D,et al.Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer[J].Journal of the American Chemical Society,2008,130(32):10643-10647.
    [18]FAROKHZAD O C,JON S Y,KHADEMHOSSEINI A,et al.Nanopartide-aptamer bioconjugates:A new approach for targeting prostate cancer cells[J].Cancer Research,2004,64(21):7668-7672.
    [19]JOKERST J V,LOBOVKINA T,ZARE R N,et al.Nanoparticle PEGylation for imaging and therapy[J].Nanomedicine,2011,6(4):715-728.
    [20]CAO H L,CHEN C,XIE D B,et al.A hyperbranched amphiphilic acetal polymer for pH-sensitive drug delivery[J].Polymer Chemistry,2018,9(2):169-177.
    [21]CAO H L,SONG H J,XIE D B,et al.GSH-responsive polymeric micelles based on the thio-ene reaction for controlled drug release[J].RSC Advances,2016,6(84):80896-80904.
    [22]ALUIGI A,SOTGIU G,FERRONI C,et al.Chlorin e6keratin nanoparticles for photodynamic anticancer therapy[J].RSC Advances,2016,6(40):33910-33918.
    [23]ZHAO T,ZHENG Y,POLY J,et al.Controlled multi-vinyl monomer homopolymerization through vinyl oligomer combination as a universal approach to hyperbranched architectures[J].Nature Communications,DOI:10.1038/nco mms2887.
    [24]ZHENG Y,CAO H,NEWLAND B,et al.3D Single cyclized polymer chain structure from controlled polymerization of multi-vinyl monomers:Beyond Flory-Stockmayer theory[J].Journal of the American Chemical Society,2011,133(33):13130-13137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700