静磁场深冷处理对TC4钛合金性能和组织的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Performance and Microstructure of TC4 Titanium Alloy with Static Magnetic Field and Deep Cryogenic Treatment
  • 作者:王宏明 ; 费爱庚 ; 李桂荣 ; 杨广林
  • 英文作者:Wang Hongming;Fei Aigeng;Li Guirong;Yang Guanglin;School of Materials Science and Engineering,Jiangsu University;
  • 关键词:TC4钛合金 ; 静磁场深冷处理 ; 力学性能 ; 晶体结构
  • 英文关键词:TC4 titanium alloy;;static magnetic field and deep cryogenic treatment;;performance;;microstructure
  • 中文刊名:ZXJS
  • 英文刊名:Chinese Journal of Rare Metals
  • 机构:江苏大学材料科学与工程学院;
  • 出版日期:2018-05-04 17:18
  • 出版单位:稀有金属
  • 年:2019
  • 期:v.43;No.278
  • 基金:国家自然科学基金项目(51371091,51001054)资助
  • 语种:中文;
  • 页:ZXJS201905004
  • 页数:10
  • CN:05
  • ISSN:11-2111/TF
  • 分类号:31-40
摘要
采用扫描电镜(SEM)、电子背散射衍射(EBSD)和X射线衍射(XRD)检测技术研究了深冷处理(DCT)和静磁场深冷处理(MDCT)条件下TC4钛合金的力学性能和组织的变化。结果表明:在处理时间为12 h的时候DCT和MDCT试样的拉伸性能均为最优,其中DCT12的抗拉强度和延伸率较空白样分别提高了2.6%和8.1%, MDCT12的抗拉强度和延伸率较空白样分别提高了3.00%和11.29%。深冷处理和静磁场深冷处理在TC4钛合金的改性方面都具有一定的效果,且静磁场深冷处理对拉伸性能的提升效果要强于单独的深冷处理。深冷处理使晶粒从(110)转向(100)和(101)方向。施加静磁场后,磁场增加了晶粒向(100)和(101)方向转动的阻力,(002)晶面表现出择优取向。钛合金晶体结构发生变化的原因是晶粒由于冷缩力和磁性附加驱动力的作用。此外,通过EBSD的检测,发现深冷和静磁场深冷处理都促进了钛合金中α→β的转变,且深冷处理弱化了{0001}方向的织构,而静磁场深冷处理强化了该方向的织构。
        Scanning electron microscopy(SEM), electron backscatter diffraction(EBSD) and X-ray diffraction(XRD) techniques were combined to investigate the mechanical properties and microstructure of TC4 titanium alloy subjected to sole deep cryogenic treatment(DCT) and simultaneous static magnetic field and deep cryogenic treatment(MDCT). It showed that the DCT and MDCT samples achieved the optimal properties when the processing time was 12 h, and the tensile strength and elongation of the DCT12 sample increased by 2.6% and 8.1%, respectively, compared with that of initial sample, while the tensile strength and elongation of MDCT12 sample increased by 3.00% and 11.29%, respectively. Deep cryogenic treatment and simultaneous static magnetic field and deep cryogenic treatment had certain effect on the modification of TC4 titanium alloy, and the effect of simultaneous static magnetic field and deep cryogenic treatment on tensile properties was stronger than that of cryogenic treatment alone. Deep cryogenic treatment made the(110) plane transform toward(100) and(101). However, after the application of a simultaneous static magnetic field, the magnetic field increased the resistance of grain in(100) and(101) direction, and the(002) crystal plane of MDCT sample showed the preferred orientation. The change of microstructure was attributed to the grain rotation caused by the effect of cold compression force and magnetic driving force. In addition, the EBSD results showed that both of the sole DCT and MDCT promoted the transformation of α→β in titanium alloy, and sole DCT weakened the texture of {0001} direction, while MDCT strengthened it.
引文
[1] Jiang C B,Hua H,Wang J M.Thermomagnetic coupling martensitic transformation and associated physical effects [J].Chinese Journal of Rare Metals,2017,41(5):505.(蒋成保,花慧,王敬民.热磁耦合马氏体相变及其物理效应 [J].稀有金属,2017,41(5):505.)
    [2] Li G R,Cui Y H,Wang H M,Zhao Y T.Microstructure and mechanical properties of in-situ aluminummatrix composites treated by cryogenic aging circular treatment [J].The Chinese Journal of Nonferrous Metals,2015,25(5):1169.(李桂荣,崔玉华,王宏明,赵玉涛.深冷时效循环处理铝基原位复合材料的显微组织和力学性能 [J].中国有色金属学报,2015,25(5):1169.)
    [3] Yu H,Liu S S,Liu L G,Ren W B,Li J.Hot mechanical behavior and deformability of TA17 titanium alloy [J].Chinese Journal of Rare Metals,2017,41(1):1.(于辉,刘帅帅,刘利刚,任万波,李军.TA7钛合金热力学行为及加工特性研究 [J].稀有金属,2017,41(1):1.)
    [4] Koneshlou M,Asl K M,Khomamizadeh F.Effect of cryogenic treatment on microstructure,mechanical and wear behaviors of AISI H13 hot work tool steel [J].Cryogenics,2011,51(1):55.
    [5] Baldissera P,Delprete C.Deep cryogenic treatment of AISI 302 stainless steel:part II-fatigue and corrosion [J].Materials and Design,2010,31(10):4731.
    [6] Zhong L Y,Li M D,Yang G,Li C F,Ren Y H,Wang W.Microstructure and mechanical properties of laser deposition manufacturing TC4 titanium alloy with heat treatment [J].Chinese Journal of Rare Metals,2018,42(7):698.(钦兰云,李明东,杨光,李长富,任宇航,王维.热处理对激光沉积TC4钛合金组织与力学性能的影响 [J].稀有金属,2018,42(7):698.)
    [7] Zhang S Q,Yin Y,Li P.Effect of cryogenic treatment on microstructure and properties of QAl9-4 aluminium bronze [J].Heat Treatment of Metals,2015,40(2):169.(张胜全,尹赟,李鹏.深冷处理对QAl9-4铝青铜组织和性能的影响 [J].金属热处理,2015,40(2):169.)
    [8] Wang H M,Chu Q Z,Li G R,Cheng J F,Zhu Y.Effect of simultaneous magnetic field and deep cryogenic treatment on the microstructure and mechanical properties of aluminium-brass [J].Materials Herald (B,Research Article),2017,31(5):82.(王宏明,储强泽,李桂荣,程江峰,朱弋.静磁场深冷处理对铝黄铜组织和性能的影响 [J].材料导报B(研究篇),2017,31(5):82.)
    [9] Liang T S.Study on magnetic deep cryogenic treatment process of 65 Mn steel [J].Journal of Liaoning Technology University,2003,22(2):264.(梁铁山.65Mn钢磁场深冷处理工艺研究 [J].辽宁工程技术大学学报,2003,22(2):264.)
    [10] Li G R,Wang H M,Li P S,Gao L Z,Peng C X,Zheng R.Mechanism of dislocation kinetics under magnetoplastic effect [J].Acta Physica Sinica,2015,64(14):1.(李桂荣,王宏明,李沛思,高雷章,彭琮翔,郑瑞.磁致塑性效应下的位错动力学机制 [J].物理学报,2015,64(14):1.)
    [11] Li G R,Li Y M,Wang F F,Wang H M.Microstructure and performance of solid TC4 titanium alloy subjectedto the high pulsed magnetic field treatment [J].Journal of Alloys and Compounds,2015,644:750.
    [12] Fang H,Ding J J,Jiang H.Corrosion resistance of copper coatings with different preferred orientations in sodium chloride solution [J].Electroplating & Finishing,2013,32(1):42.(方华,丁俊杰,姜赫.不同晶面择优取向铜镀层在氯化钠溶液中的耐蚀性 [J].电镀与涂饰,2013,32(1):42.)
    [13] Yang Y.The Effect of Alloy Element and Cryogenic Treatment on Al-Si Alloy Mechanical Properties and Microstructure [D].Shenyang:Shenyang University of Technology,2015.41.(杨叶.合金元素和深冷处理对铸造铝硅合金性能及组织的影响 [D].沈阳:沈阳工业大学,2015.41.)
    [14] Chen D,Li W X.Cryogenic treatment of Al and Al alloys [J].The Chinese Journal of Nonferrous Metals,2000,10(6):891.(陈鼎,黎文献.铝和铝合金的深冷处理 [J].中国有色金属学报,2000,10(6):891.)
    [15] Zhang W C.Casting of Ti and Ti Alloys [M].Beijing:China Machine Press,2005.9.(张武城.钛及钛合金铸造[M].北京:机械工业出版社,2005.9.)
    [16] Xie P R.Study on Improving Performance of Titanium Alloy by Deep Cryogenic and Thermal-Cold Cycling Treatment [D].Changsha:Hunan University,2014.36.(谢配孺.钛及钛合金的深冷与冷热循环处理研究 [D].长沙:湖南大学,2014.36.)
    [17] Wang G S.Applied Technology of Titanium [M].Changsha:Central South University Press,2007.32.(王桂生.钛的应用技术 [M].长沙:中南大学出版社,2007.32.)
    [18] Wang F F.Research on the Magneto-Plasticity Effect in TC4 Titanium Alloy [D].Zhenjiang:Jiangsu University,2017.24.(王芳芳.TC4钛合金的磁致塑性效应研究 [D].镇江:江苏大学,2017.24.)
    [19] Li G R,Li Y M,Wang F F,Wang H M.Effect of high pulsed magnetic field on microstructrue and mechanical properties of TC4 titanium alloy [J].The Chinese Journal of Nonferrous Metals,2015,25(2):331.(李桂荣,李月明,王芳芳,王宏明.脉冲强磁场处理对TC4钛合金显微组织及力学性能的影响 [J].中国有色金属学报,2015,25(2):331.)
    [20] He B B,Hu B,Yen H W,Cheng G J,Wang Z K,Luo H W,Huang M X.High dislocation density-induced large ductility in deformed and partitioned steels [J].Science,2017,357:1029.
    [21] Valko L,Valko M.On influence of the magnetic field effect on the solid-melt phase transformations [J].IEEE Transactions on Magnetics,1994,30(2):1122.
    [22] Magomedov M N.On the magnetic-field-induced changes in the parameters of phase transitions [J].Technical Physics Letters,2002,28(2):116.
    [23] Li Y M.Effect of Microplastic Deformation on the Microstructure and Mechanical Properties of TC4 Titanium Alloy [D].Zhenjiang:Jiangsu University,2015.34.(李月明.微塑性变形对TC4钛合金微观组织及力学性能的影响 [D].镇江:江苏大学,2015.34.)
    [24] Liu Z G,Li P J,Xiong L T,Liu T Y,He L J.High-temperature tensile deformation behavior and microstructure evolution of Ti55 titanium alloy [J].Materials Science & Engineering A:2017,680:259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700