热辐射暴露下消防员的生理反应及皮肤烧伤预测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Predictions of physiological reaction and skin burn of firefighter exposing to thermal radiation
  • 作者:苏云 ; 杨杰 ; 李睿 ; 宋国文 ; 李俊 ; 张向辉
  • 英文作者:SU Yun;YANG Jie;LI Rui;SONG Guowen;LI Jun;ZHANG Xianghui;Fashion & Art Design, Donghua University;Protective Clothing Research Center,Donghua University;Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University;Iowa State University;
  • 关键词:生理反应 ; 皮肤烧伤 ; 热防护性能 ; 消防服 ; 热辐射
  • 英文关键词:physiological reaction;;skin burn;;thermal protective performance;;firefighting protective clothing;;thermal radiation
  • 中文刊名:FZXB
  • 英文刊名:Journal of Textile Research
  • 机构:东华大学服装与艺术设计学院;东华大学功能防护服装研究中心;东华大学现代服装设计与技术教育部重点实验室;爱荷华州立大学;
  • 出版日期:2019-02-15
  • 出版单位:纺织学报
  • 年:2019
  • 期:v.40;No.395
  • 基金:中央高校基本科研业务费专项基金资助项目(2232018G-08);; 国家自然科学基金资助项目(51576038);; 上海市自然科学基金项目(17ZR1400500);; 东华大学青年教师科研启动基金资助项目(107-07-005328)
  • 语种:中文;
  • 页:FZXB201902025
  • 页数:6
  • CN:02
  • ISSN:11-5167/TS
  • 分类号:153-158
摘要
为优化消防服热防护性能的评价准则,基于消防服热传递规律与人体热生理调节机制,建立了消防员生理反应与皮肤烧伤预测模型,利用服装热防护性能测试平台对比分析了平均皮肤温度、核心温度的变化趋势与预测误差。结果表明:基于模型预测的平均皮肤温度与核心温度均略大于实验测量结果,但总体变化趋势与实验结果具有较高的一致性;在热暴露条件下消防员面临着皮肤烧伤与热应激的双重威胁,皮肤烧伤更多发生在热暴露阶段,热应激更可能产生在热暴露结束之后,这是由于热传递的滞后效应导致;消防服热防护性能的评价需要综合考虑皮肤烧伤与人体热应激作为评价指标,从而更加准确地标定及优化消防服的热防护性能。
        In order to improve the evaluation criteria on thermal protective performance of firefighting protective clothing, the prediction model on physiological reaction and skin burn of firefighter exposing to thermal radiation was developed based on mechanisms of heat transfer in clothing and human thermal physiological regulation. The changing trend and prediction deviation of mean skin temperature and core temperature were analyzed by the thermal protective performance tester of clothing. The results demonstrat that the mean skin temperature and core temperature predicted by the model are slightly larger than the values measured by the experiment, but the overall trend presents higher consistence with the experimental results. Additionally, firefighters in the heat exposure subject to threats of both skin burn and heat stress. The skin burn is caused during the exposure while it is more likely to produce heat stress after the end of exposure, which is attributed to lag effect of heat transfer. Therefore, the skin burn and the heat stress should be both used to more precisely characterize and improve the thermal protective performance of firefighting protective clothing.
引文
[1] BARR D, GREGSON W, REILLY T. The thermal ergonomics of firefighting reviewed[J]. Applied Ergonomics, 2010, 41(1):161-172.
    [2] ROSSI R, INDELICATO E, BOLLI W. Hot steam transfer through heat protective clothing layers[J]. International Journal of Occupational Safety and Ergonomics, 2004, 10(3):239-245.
    [3] SU Yun, LI Jun. Development of a test device to characterize thermal protective performance of fabrics against hot steam and thermal radiation[J]. Measurement Science and Technology, 2016, 27 (12): 125904.
    [4] FTAITI F, DUFLOT J C, NICOL C, et al. Tympanic temperature and heart rate changes in firefighters during treadmill runs performed with different fireproof jackets[J]. Ergonomics, 2001, 44: 502-512.
    [5] FONTANA P, SAIANI F, GRüTTER M, et al. Thermo-physiological impact of different firefighting protective clothing ensembles in a hot environment[J]. Textile Research Journal, 2018, 88(7): 744-753.
    [6] LEE Y M, BARKER R L. Thermal protective performance of heat-resistant fabrics in various high intensity heat exposures[J]. Textile Research Journal, 1987, 57(3):123-132.
    [7] SONG G. Cothing air gap layers and thermal protective performance in single layer garment[J]. Journal of Industrial Textiles, 2007, 36(3):193-205.
    [8] TORVI D A, HADJISOPHOCLEUS G V. Research in protective clothing for firefighters: state of the art and future directions[J]. Fire Technology, 1999, 35(2):111-130.
    [9] STOLWIJK J. A mathematical model of physiological temperature regulation in man[J]. NASA Contractor Report, 1971,DOI:ASA CR-1855.
    [10] GAGGE A P. An effective temperature scale based on a simple model of human physiological regulatory res-ponse[J]. Ashrae Trans, 1971, 77(1):21-36.
    [11] TANABE S, KOBAYASHI K, NAKANO J. Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD)[J]. Energy & Buildings, 2002, 34(6):637-646.
    [12] FIALA D, LOMAS K J, STOHRER M. Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental condi-tions[J]. International Journal of Biometeorology, 2001, 45(3):143-159.
    [13] HUIZENGA C, HUI Z, ARENS E. A model of human physiology and comfort for assessing complex thermal environments[J]. Building & Environment, 2001, 36(6):691-699.
    [14] TORVI D A, DALE J D. Heat transfer in thin fibrous materials under high heat flux[J]. Fire Technology, 1999, 35(3):210-231.
    [15] CENGEL Y A, GHAJAR A J. Heat and Mass Transfer: Fundamentals & Applications[M]. New York: McGraw-Hill, 2011:578-655.
    [16] SAWCYN C M J, TORVI D A. Improving heat transfer models of air gaps in bench top tests of thermal protective fabrics[J]. Textile Research Journal, 2009, 79(7):632-644.
    [17] LAWSON L K, CROWN E M, ACKERMAN M Y, et al. Moisture effects in heat transfer through clothing systems for wildland firefighters[J]. International Journal of Occupational Safety & Ergonomics, 2004, 10(3):227-238.
    [18] PRASAD K, TWILLEY W H, LAWSON J R. Thermal Performance of fire fighters′ protective clothing: numerical study of transient heat and water vapor transfer[C]// US Department of Commerce. NISTIR 6881. Gaithersburg: National Institute of Standards and Technology, 2002:1-29.
    [19] AHMED GHAZY, BERGSTROM D. Numerical simulation of transient heat transfer in a protective clothing system during a flash fire exposure[J]. Numerical Heat Transfer, 2010, 58(9):702-724.
    [20] WISSLER E H. Whole-body human thermal modeling, an alternative to immersion in cold water and other unpleasant endeavors[J]. Journal of Heat Transfer, 2012.DOI:10.1115/IHIC14-23340.
    [21] PARSONS K. Human Thermal Environments: the Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort, and Performance[M]. New York: CRC Press Inc, 2014:59-77.
    [22] MCLELLAN T M. The importance of aerobic fitness in determining tolerance to uncompensable heat stress[J]. Comparative Biochemistry and Physiology: Part A, Molecular & Integrative Physiology, 2001, 128(4):691-700.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700