织物纤维干湿态压缩成型特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Compression properties of fabric fibers under dry and wet conditions
  • 作者:韦凯 ; 王东兴 ; 王彦科 ; 杨旭静
  • 英文作者:WEI Kai;WANG Dongxing;WANG Yanke;YANG Xujing;School of Mechanical and Vehicle Engineering,Hunan University;
  • 关键词:黏弹性 ; 湿态织物 ; 成型厚度 ; 回弹厚度 ; 时间常数
  • 英文关键词:viscoelasticity;;wet fabric;;forming thickness;;rebound thickness;;time constants
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:湖南大学机械与运载工程学院;
  • 出版日期:2018-05-21 14:48
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:湖南省自然科学基金(2017JJ3031);; 国家自然科学基金(11602081)
  • 语种:中文;
  • 页:FUHE201904006
  • 页数:11
  • CN:04
  • ISSN:11-1801/TB
  • 分类号:62-72
摘要
对干态和湿态两种工况下的碳纤维和玻璃纤维织物进行了压缩成型特性实验,利用黏弹性理论模型,分析了上述两种工况下压缩、应力松弛和回弹阶段的黏弹性曲线和黏弹性模型参数。通过分析两种工况下织物纱线压缩成型3个阶段的变形机制,阐述了产生上述差异的原因。结果表明,对于织物压缩阶段,当达到相同的最大成型压力时,湿态织物的成型厚度比干态的成型厚度略大。湿态织物的压缩时间比干态的压缩时间短,且织物规格越小,相差时间越少。湿态织物压缩阶段的时间常数小于干态织物对应值。对于织物应力松弛和回弹阶段,介质较少渗入织物间隙,织物变形过程基本相同,织物在两种工况下的成型厚度差值与回弹厚度差值十分接近。因此,湿态下织物的回弹厚度比干态下的回弹厚度略大。应力松弛和回弹阶段的时间常数基本相同。上述研究结果对纤维增强树脂基复合材料的成型工艺具有了一定的指导意义。
        The experiments of carbon fabrics and glass fiber fabrics under both dry and wet conditions were conducted for exploring the compression characteristic.By using the viscoelastic theory model,the viscoelastic curves and viscoelastic model parameters of the compression,stress relaxation and rebound stages under the two aforementioned conditions were analyzed.The deformation mechanism at three compression stages of the yarn was analyzed,and the corresponding explanations for these differences were presented.The results show that the forming thickness of wet fabrics is slightly larger than dry fabrics when the same maximum forming pressure is loaded at the compression stage.The compression time of wet fabrics is shorter than that of dry fabrics,and the yarn specification is much smaller.Besides,the difference of the time is not obvious.The time constant at the compression stage for wet fabrics is less than the corresponding value for dry fabrics.At the stress relaxation and rebound stage,a small amount of media penetrates into the fabric gaps,while the change process of the fabrics is basically the same.The forming thickness difference and rebound thickness difference under the two conditions are very close.Correspondingly,the rebound thickness of wet fabrics is finally slightly larger than that of dry fabrics.The time constants of stress relaxation and rebound are basically the same.These results provide important guidance for the forming process of fiber reinforced resin matrix composites.
引文
[1]FRIEDRICH K,ALMAJID A A.Manufacturing aspects of advanced polymer composites for automotive applications[J].Applied Composite Materials,2013,20(2):107-128.
    [2]LYU M Y,CHOI T G.Research trends in polymer materials for use in lightweight vehicles[J].International Journal of Precision Engineering &Manufacturing,2015,16(1):213-220.
    [3]雷瑞,郑化安,付东升.高性能纤维增强复合材料应用的研究进展[J].合成纤维,2014,43(07):37-40.LEI Rui,ZHENG Huaan,FU Dongsheng.Application of high performance fiber reinforced composite materials[J].Synthetic Fiber in China,2014,43(07):37-40(in Chinese).
    [4]KHAN L A,MAHMOOD A H,HASSAN B,et al.Cost-effective manufacturing process for the development of automotive from energy efficient composite materials and sandwich structures[J].Polymer Composites,2013,35(1):97-104.
    [5]宋清华,肖军,文立伟,等.模压工艺对玻璃纤维增强聚丙烯复合材料层合板力学性能的影响[J].复合材料学报,2016,33(12):2740-2748.SONG Qinghua,XIAO Jun,WEN Liwei,et al.Influence of molding press on mechanical properties of glass fiber reinforced polypropylene composite laminates[J].Acta Materiae Compositae Sinica,2016,33(12):2740-2748(in Chinese).
    [6]齐文,刘东,赵俊利,等.RTM工艺充模过程模拟研究进展[J].玻璃钢/复合材料,2015,(12):105-109.QI Wen,LIU Dong,ZHAO Junli,et al.Progress in numerical simulation of mold filling in RTM[J].Fiber Reinforced Plastics/Composites,2015,(12):105-109(in Chinese).
    [7]金天国,魏雅君,杨波,等.预成型体渗透率预测及其受压缩变形的影响[J].复合材料学报,2015,32(03):840-847.JIN Tianguo,WEI Yajun,YANG Bo,et al.Permeability prediction of textile preform and influence of compression deformation[J].Acta Materiae Compositae Sinica,2015,32(3):840-847(in Chinese).
    [8]刘刚,张朋,李伟东,等.结构化增韧层增韧RTM复合材料预成型体的渗透特性[J].复合材料学报,2015,32(2):586-593.LIU Gang,ZHANG Peng,LI Weidong,et al.Permeability of toughened RTM composite preforms by structural toughening layer[J].Acta Materia Compositae Sinica,2015,32(2):586-593(in Chinese).
    [9]刘山,邢素丽,杨金水,等.真空导入模塑工艺纤维预成型体厚度变化和流体压力变化研究进展[J].材料导报,2016,30(19):7-18.LIU Shan,XING Suli,YANG Jinshui,et al.Review on variations of fiber preform thickness and fluid pressure in vacuum infusion molding process[J].Materials Review,2016,30(19):7-18(in Chinese).
    [10]MASANIA K.The compression resin transfer moulding process for efficient composite manufacture[C]//Sampe Europe Technical Conference,2013:8931-8941.
    [11]SHOJAEI A.Numerical simulation of three-dimensional flow and analysis of filling process in compression resin transfer moulding[J].Applied Science &Manufacturing,2006,37(9):1434-1450.
    [12]杨金水,肖加余,曾竟成,等.真空导入模塑工艺中织物预成型体的可压缩性[J].复合材料学报,2011,28(06):1-7.YANG Jinshui,XIAO Jiayu,ZENG Jingcheng,et al.Compressibility of fabric preforms in vacuum infusion molding process[J].Acta Materiae Compositae Sinica:2011,28(06):1-7(in Chinese).
    [13]祝君军,段跃新,陈吉平,等.碳纤维经编织物定型参数及渗透特性[J].复合材料学报,2012,29(03):42-48.ZHU Junjun,DUAN Yuexin,CHEN Jiping,et al.Packifier parameters and permeability characteristics of non-crimp stitched carbon fabrics[J].Acta Materiae Compositae Sinica,2012,29(03):42-48(in Chinese).
    [14]ENDRUWEIT A,LONG A C.A model for the in-plane permeability of triaxially braided reinforcements[J].Composites Part A Applied Science &Manufacturing,2011,42(2):165-172.
    [15]WU W,JIANG B,XIE L,et al.Effect of compaction and preforming parameters on the compaction behavior of bindered textile preforms for automated composite manufacturing[J].Applied Composite Materials,2013,20(5):907-926.
    [16]YANG J,XIAO J,ZENG J,et al.Compaction behavior and part thickness variation in vacuum infusion molding process[J].Applied Composite Materials,2012,19(3-4):443-458.
    [17]潘利剑,刘卫平,陈萍,等.碳纤维经编多轴向织物的压缩特性[C]//中国科协年会第11分会场:低成本、高性能复合材料发展论坛.2012.PAN Lijian,LIU Weiping,CHEN Ping,et al.Research on compression behavior of multi-axial warp-knitted fabrics[C]//Annual Meeting of China Association for Science and Technology eleventh branch field:the low cost and high performance composite material development forum proceedings,2012(in Chinese).
    [18]YENILMEZ B,SENAN M,SOZER E M.Variation of part thickness and compaction pressure in vacuum infusion process[J].Composites Science &Technology,2009,69(11-12):1710-1719.
    [19]RENAUD J,VERNET N,RUIZ E,et al.Creep compaction behavior of 3Dcarbon interlock fabrics with lubrication and temperature[J].Composites Part A Applied Science &Manufacturing,2016,86:87-96.
    [20]LI L,ZHAO Y,YANG J,et al.An experimental investigation of compaction behavior of carbon non-crimp fabrics for liquid composite molding[J].Journal of Materials Science,2015,50(7):2960-2972.
    [21]张嘉阳,刘刚,李龙,等.国产CCF300碳纤维单向织物液体成型工艺性及其复合材料力学性能[J].复合材料学报,2016,33(1):17-26.ZHANG Jiayang,LIU Gang,LI Long,et al.Processability of domestic CCF300carbon fiber unidirectional fabrics for liquid molding and mechanical properties of their cmposites[J].Acta Materiae Compositae Sinica,2016,33(1):17-26(in Chinese).
    [22]POTLURI P,SAGAR T V.Compaction modelling of textile preforms for composite structures[J].Composite Structures,2008,86(1):177-185.
    [23]KRUCKENBERG T,LIN Y,PATON R.Static and vibration compaction and microstructure analysis on plain-woven textile fabrics[J].Composites Part A:Applied Science &Manufacturing,2008,39(3):488-502.
    [24]YOUSAF Z,POTLURI P,WITHERS P J.Influence of tow architecture on compaction and nesting in textile preforms[J].Applied Composite Materials,2017,24(2):337-350.
    [25]YANG X,WANG Y,MO F,et al.Characterization of nesting effects on compression processes for plain woven fabrics in composites manufacturing[J].Journal of Reinforced Plastics&Composites,2017,36(20).
    [26]WEI K,WANG Y,YANG X.Viscoelastic modeling of responses in the whole compaction process for woven fiber reinforcements[J].International Journal of Applied Mechanics,2018,10(02):1850019.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700