离子迁移特性对水树微观结构的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Ion Migration Properties on the Microstructure of Water Trees
  • 作者:周凯 ; 李天华 ; 朱光亚 ; 何珉 ; 张春烁 ; 陈泽龙
  • 英文作者:ZHOU Kai;LI Tianhua;ZHU Guangya;HE Min;ZHANG Chunshuo;CHEN Zelong;College of Electrical Engineering and Information Technology, Sichuan University;Electric Power Research Institute, State Grid Chongqing Electric Power Company;
  • 关键词:交联聚乙烯 ; 电力电缆 ; 水树 ; 离子迁移 ; 微观结构
  • 英文关键词:XLPE;;power cable;;water tree;;ion migration;;microstructure
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:四川大学电气信息学院;国网重庆市电力公司电力科学研究院;
  • 出版日期:2019-05-28
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.318
  • 基金:国家自然科学基金(51477106)~~
  • 语种:中文;
  • 页:GDYJ201905037
  • 页数:8
  • CN:05
  • ISSN:42-1239/TM
  • 分类号:293-300
摘要
为了揭示离子对交流交联聚乙烯(XLPE)电力电缆中水树生长特性的影响,观察了采用不同离子的电解质溶液老化后水树的微观结构,并提出一种离子的迁移特性影响水树生长的可能解释。对XLPE样本在浓度为0.1 mol/L的氯化钠、氯化钾溶液中进行加速水树老化实验,观察水树形态与微观结构,并进行红外光谱测试,依据观察到的水树结构进行建模仿真与分析。研究结果表明:相比氯化钾溶液,氯化钠溶液老化后呈现水树长度较长、水树枝宽度较小的特点,同时水树内部的微孔较小;红外光谱结果从整体角度得出氯化钠溶液老化后的水树老化更为严重;水树区域存在电场屏蔽现象,其内部的电场强度比水树枝前端及两侧低,且氯化钠溶液老化后的水树前端电场比氯化钾溶液的强;在XLPE样本中氯化钠溶液的迁移速度快且水树前端的电场强度大,则水树生长速度快,内部微孔等的生长时间受限于水树生长速度,因此氯化钠溶液老化后水树的微孔小、水树枝细。所以在溶液的离子浓度相同时,离子迁移速度快的水树长度长,但水树内部微孔小、水树枝较细。
        To reveal the influence of ion properties on the water tree propagation characteristics of AC cross-linked polyethylene(XLPE) power cables, the microstructures of water trees aged in different solutions were observed, and a possible mechanism was presented to explain how ion migration affected the water tree propagation. Accelerated water tree aging experiments were performed in NaCl and KCl solutions(0.1 mol/L). The water tree structures were observed by optical microscope and tested by infrared spectrum(IR). Electric field simulation was established using the real data of water tree structure. The results show that water trees in NaCl solutions are longer and thinner with small micro voids than those in KCl solutions. Water trees in NaCl solutions are aged more seriously than those in KCl solutions by means of IR. There is field shielding phenomenon in water tree regions. The electric field inside water tree is much lower than that at water tree branch tips and border. The electric field simulation results show that the electric field of water tree branch tips aged in NaCl solutions is greater than that in KCl solutions. In the XLPE material, sodium ions migrate faster than potassium ions. Consequently, water trees propagate faster in NaCl solutions. Therefore, the size of micro voids and water tree branches are limited to the speed of water tree propagation. So water tree branches are thin with small micro voids in Na Cl solutions than those in KCl solutions. In the same ionic concentration, fast ionic migration induces long water tree, small micro voids and thin branches.
引文
[1]杨颖,游蛟,贾志东,等.10 k V交联聚乙烯电缆运行状态评估分析[J].高电压技术,2017,43(5):1684-1692.YANG Ying,YOU Jiao,JIA Zhidong,et al.Evaluation analysis of 10kV XLPE cable’s operation condition[J].High Voltage Engineering,2017,43(5):1684-1692.
    [2]周凯,李康乐,杨明亮,等.XLPE电缆在不同温度下的力学响应对水树生长的影响[J].高电压技术,2018,44(5):1428-1434.ZHOU Kai,LI Kangle,YANG Mingliang,et al.Influence of mechanical responses of XLPE cables at different temperatures on water tree propagation[J].High Voltage Engineering,2018,44(5):1428-1434.
    [3]郑晓泉,王金锋,李彦雄.交联聚乙烯中水树枝向电树枝的转化[J].中国电机工程学报,2013,36(22):166-174.ZHENG Xiaoquan,WANG Jinfeng,LI Yanxiong.Transformation of electrical tree from water tree degradation in XLPE[J].Proceedings of the CSEE,2013,36(22):166-174.
    [4]沈庆河,郑晓泉,刘嵘,等.水树枝影响交联聚乙烯电缆绝缘可靠性的试验研究[J].绝缘材料,2015,48(2):44-48.SHEN Qinghe,ZHENG Xiaoquan,LIU Rong,et al.Experimental study of water tree affecting the reliability of XLPE cable insulation[J].Insulation Materials,2015,48(2):44-48.
    [5]WANG Z,MARCOLONGO P,LEMBERG J A,et al.Mechanical fatigue as a mechanism of water tree propagation in TR-XLPE[J].IEEE Transactions on Dielectrics and Electrical Insulation,2012,19(1):321-330.
    [6]TEISSEDRE G,VISATA O I,FILIPPINI J C.On the role of ions in the formation of water trees in polyethylene cable insulation[C]∥2002Annual Report Conference on Electrical Insulation and Dielectric Phenomena.Cancun,Mexico:IEEE,2002:942-945.
    [7]SHIMIZU N,TANAKA H.Effect of liquid impregnation on electrical tree initiation in XLPE[J].IEEE Transactions on Dielectrics and Electrical Insulation,2001,8(2):239-243.
    [8]倪勇,江平开,张军,等.电缆半导电屏蔽层中导电离子析出模型分析[J].电线电缆,2008(4):15-19.NI Yong,JIANG Kaiping,ZHANG Jun,et al.Model analysis of the conductive ions escaped from the cable semi conductive shield[J].Electric Wire and Cable,2008(4):15-19.
    [9]刘曦,蔡钢,濮峻嵩,等.聚合物形态变化与水树生长的关联性研究[J].绝缘材料,2016,49(5):60-64.LIU Xi,CAI Gang,PU Junsong,et al.Study on relationship between polymer morphology change and water tree propagation[J].Insulation Materials,2016,49(5):60-64.
    [10]BAO T,TANAKA J.The diffusion of ions in polyethylene[C]∥The3rd International Conference on Properties and Applications of Dielectric Materials.Tokyo,Japan:IEEE,1991:236-239.
    [11]GIVEN M J,FOURACRE R A,CRICHTON B H.The role of ions in the mechanism of water tree growth[J].IEEE Transactions on Dielectrics and Electrical Insulation,1987,22(2):151-156.
    [12]BOONRAKSA T,MARUNGSRI B.Role of ionic solutions affect water treeing propagation in XLPE insulation for high voltage cable[J].World Academy of Science,Engineering and Technology,International Journal of Electrical,Computer,Energetic,Electronic and Communication Engineering,2014,8(5):788-791.
    [13]周凯,杨明亮,陶文彪,等.单一极性直流电压下交联聚乙烯电力电缆水树生长特性[J].高电压技术,2015,41(4):1075-1083.ZHOU Kai,YANG Mingliang,TAO Wenbiao,et al.Propagation characteristics of water trees in XLPE power cables under single polarity DC voltage[J].High Voltage Engineering,2015,41(4):1075-1083.
    [14]UEHARA H,KUDO K,TSUBOI Y,et al.Polarity effect of water treeing using new water electrode method[C]∥International Conference on Electrical Insulation and Dielectric Phenomena(CEIDP).Shenzhen,China:IEEE,2013:506-509.
    [15]ABDERRAZZAQ M H.Development of water tree structure in polyester resin[J].IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(1):158-165.
    [16]HVIDSTEN S,ILDSTAD E,FAREMO H.Mechanisms causing nonlinear dielectric response of water treed XLPE cables[C]∥International Conference on Conduction and Breakdown in Solid Dielectrics(ICSD).Vasteras,Sweden:IEEE,1998:73-78.
    [17]THOMAS A J,SAHA T K.A new dielectric response model for water tree degraded XLPE insulation,part A:model development with small sample verification[J].IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(4):1131-1143.
    [18]DALAL S B,GORUR R S,DYER M L.Aging of distribution cables in service and its simulation in the laboratory[J].IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(1):139-146.
    [19]ZHOU K,HUANG M,TAO W,et al.A possible water tree initiation mechanism for service-aged XLPE cables:conversion of electrical tree to water tree[J].IEEE Transactions on Dielectrics and Electrical Insulation,2016,23(3):1854-1861.
    [20]周凯,杨明亮,黄明,等.有机硅修复后水树电缆在电热老化下的电气性能和微观结构变化[J].高电压技术,2017,43(5):1656-1663.ZHOU Kai,YANG Mingliang,HUANG Ming,et al.Changes of electrical properties and micro structures of water-tree cables rejuvenated by siloxane during the process of electrical-thermal aging[J].High Voltage Engineering,2017,43(5):1656-1663.
    [21]ROSS R,MEGENS M.Dielectric properties of water trees[C]∥IEEEInternational Conference on Properties and Application of Dielectric Materials(ICPADM).Xi’an,China:IEEE,2000:455-458.
    [22]北京石油化工工程公司.氯碱工业理化常数手册(修订版)[M].北京:化学工业出版社,1988:425.Beijing Petrochemical Engineering Co.,Ltd.Handbook of physicochemical constants of chlor-alkali industry(revised edition)[M].Beijing,China:Chemical Industry Press,1988:425.
    [23]ROSS R.Inception and propagation mechanisms of water treeing[J].IEEE Transactions on Dielectrics and Electrical Insulation,1998,5(5):660-680.
    [24]CRINE J P,JOW J.A water treeing model[J].IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(4):801-808.
    [25]李康乐,周凯,杨明亮,等.冷热两种扎孔方式下交联聚乙烯电缆中的水树生长特征[J].绝缘材料,2017,50(3):49-53.LI Kangle,ZHOU Kai,YANG Mingliang,et al.Water tree propagation characteristics in XLPE cables under cold insertion and heat insertion[J].Insulating Materials,2017,50(3):49-53.
    [26]胡赓祥,蔡珣,戎咏华.材料科学基础[M].3版.上海:上海交通大学出版社,2010:132-135.HU Gengxiang,CAI Xun,RONG Yonghua.Fundamentals of materials science[M].3rd ed.Shanghai,China:Shanghai Jiao Tong University Press,2010:132-135.
    [27]彭潜.工频耐压试验在XLPE电缆绝缘检测中的研究[D].武汉:华中科技大学,2005:2-3.PENG Qian.Research on power frequency withstand voltage test of XLPE cable insulation checking[D].Wuhan,China:Huazhong University of Science and Technology,2005:2-3.
    [28]余德才,曹文娟,余旭东,等.离子质电比和相差异因子对离子半径的综合标度[J].物理化学学报,2008,24(5):880-884.YU Decai,CAO Wenjuan,YU Xudong,et al.Synthetic scale of ionic radius by ionic mass-to-electricity and factor of phase difference[J].Acta Physico-Chimica Sinica,2008,24(5):880-884.
    [29]王金锋,郑晓泉,李彦雄.聚乙烯中水树枝-电树枝的相互转化[J].电线电缆,2012(5):25-30.WANG Jinfeng,ZHENG Xiaoquan,LI Yanxiong.Mutual transformation of water tree and electrical tree in PE[J].Electric Wire and Cable,2012(5):25-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700