纳米颗粒对污水中耐药细菌的毒性影响及机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Toxicity of Nanoparticles on Antibiotic Resistant Bacteria in Wastewater:Effects and Mechanisms
  • 作者:毛步云 ; 黄雅梦 ; 胡南 ; 周永璋 ; 袁青彬
  • 英文作者:MAO Buyun;HUANG Yameng;HU Nan;ZHOU Yongzhang;YUAN Qingbin;College of Environmental Science and Engineering, Nanjing Tech University;College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University;
  • 关键词:纳米氧化物 ; 耐药细菌 ; 城市污水 ; 毒性 ; 机理
  • 英文关键词:nano-oxides;;antibiotics-resistant bacteria;;municipal wastewater;;toxicity;;mechanism
  • 中文刊名:FJKS
  • 英文刊名:Environmental Science & Technology
  • 机构:南京工业大学环境科学与工程学院;南京工业大学生物与制药工程学院;
  • 出版日期:2018-12-15
  • 出版单位:环境科学与技术
  • 年:2018
  • 期:v.41
  • 基金:国家自然科学基金(51608260);; 污染控制与资源化研究国家重点实验室开放基金(PCRRF16029)
  • 语种:中文;
  • 页:FJKS201812004
  • 页数:10
  • CN:12
  • ISSN:42-1245/X
  • 分类号:26-35
摘要
污水厂是耐药细菌的储存库,也是纳米氧化物汇集的重要场所。污水中耐药细菌可能受到纳米氧化物的影响,使其生态环境风险发生显著改变。该文研究了纳米颗粒对城市污水中耐药细菌的毒性,以耐四环素(TC)大肠杆菌为对象,研究了4种纳米氧化物(nZnO、nCuO、nTiO_2和nAl_2O_3)在不同粒径下对其毒性的影响,进而以nZnO为例考察了浓度和不同赋存形态的影响,在此基础上从接触效应和溶出效应两方面考察了纳米氧化物对耐药细菌毒性的产生机制。实验结果表明,4种纳米氧化物中,nZnO的细胞毒性最强,然后依次是nCuO、nTiO_2和nAl_2O_3;纳米氧化物浓度越高,粒径越小,赋存时间越长,则毒性越强。从影响机理看,纳米氧化物首先刺激细胞产生应激反应,进而破坏细胞膜。纳米氧化物接触效应和溶出效应共同发挥作用,但后者占主要地位。胞内金属离子含量和细胞存活率间呈良好相关性,溶出效应对毒性的贡献在70%~84%。该文可为研究纳米材料对耐药细菌的生物效应提供参考。
        Wastewater treatment plant is the reservoir of both antibiotics-resistant bacteria(ARB) and nano-oxides of the environment. ARB in wastewater may be affected by nano-oxides, causing the significant change of their ecological risks. In this paper, the toxicity of nano-oxides on ARB in municipal wastewater was studied. Tetracycline(TC)-resistant Escherichia coli was taken as the research object. The toxicity of four kinds of nano-oxides(nZnO, nCuO, nTiO_2 and nAl_2O_3) were studied under different sizes. Furthermore, nZnO was used as the representative to investigate its toxicity under various concentrations and storage time. Based on this, the mechanism of the nano-oxides toxicity on ARB was investigated from both the contact effect and dissolution effect. The results showed that nZnO had the strongest toxicity, followed by nCuO, nTiO_2 and nAl_2O_3.Nano-oxides with a higher concentration, smaller size and longer storage time would result in the promotion of their toxicities. The mechanism investigation indicated ARB was stimulated by nano-oxides to produce ROS, then the cell membrane was destroyed. The contact effect and dissolution effect worked together for the generation of the toxicity, but the latter was dominant. A significant correlation between the intracellular metal ion content and the cell viability was observed. The dissolution effect contributed to 70%~84% of the toxicity. The study would provide implications for assessing the biological effect of nano materials on ARB.
引文
[1]罗义,周启星.抗生素抗性基因(ARGs)一种新型环境污染物[J].环境科学学报,2008,28(8):1499-1505.Luo Yi,Zhou Qixing.Antibiotic resistance genes(ARGs)as emerging pollutants[J].Acta Scientiae Circumstantiae,2008,28(8):1499-1505.
    [2]佟娟,魏源送.污水处理厂削减耐药菌与抗性基因的研究进展[J].环境科学学报,2012,32(11):2650-2659.Tong Juan,Wei Yuansong.State-of-the-art removal of antibiotic resistance bacteria(ARB)and antibiotic resistance gene(ARG)in wastewater treatment plants(WWTPs)[J].Acta Scientiae Circumstantiae,2012,32(11):2650-2659.
    [3]张斐.城市污水处理系统中多重耐药性细菌和耐药基因的研究[D].新乡:河南师范大学,2016.Zhang Fei.Study of Multi-drug Resistant Bacteria and Resistance Genes in Urban Sewage Treatment Systems[D].Xinxiang:Henan Normal University,2016.
    [4]Reinthaler F F,Posch J,Feierl G,et al.Antibiotic resistance of E.coli in sewage and sludge[J].Water Research,2003,37(8):1685-1690.
    [5]杨清香,李学梅,贾振杰,等.抗生素抗性异养细菌在不同水体中的生态分布研究[J].环境污染治理技术与设备,2006,7(12):57-60.Yang Qingxiang,Li Xuemei,Jia Zhenjie,et al.Ecological distribution of antibiotic-resistant heterotrophic bacteria in different sources of water[J].Techniques and Equipment for Environmental Pollution Control,2006,7(12):57-60.
    [6]Huang J J,Hu H Y,Lu S Q,et al.Monitoring and evaluation of antibiotic-resistant bacteria at a municipal wastewater treatment plant in China[J].Environment International,2012(42):31-36.
    [7]Brar S K,Verma M,Tyagi R D,et al.Engineered nanoparticles in wastewater and wastewater sludge evidence and impacts[J].Waste Management,2010,30(3):504-520.
    [8]Kiser M A,Westerhoff P,Benn T,et al.Titanium nanomaterial removal and release from wastewater treatment plants[J].Environment Science and Technology,2009,43(17):6757-6763.
    [9]杨晓南.水中纳米TiO2特性及对SBR活性污泥系统稳定性的影响研究[D].哈尔滨:哈尔滨工业大学,2013.Yang Xiaonan.Characteristics of TiO2Nanoparticle in Water and Effects on the Stability of SBR Activated Sludge System[D].Harbin:Harbin Institute of Technology,2013.
    [10]Ng A M,Chan C M,Guo M Y,et al.Antibacterial and photocatalytic activity of TiO2and ZnO nanomaterials in phosphate buffer and saline solution[J].Applied Microbiology and Biotechnology,2013,97(12):5565-73.
    [11]Elsaesser A,Howard CV.Toxicology of nanoparticles[J].Adv Drug Deliver Rev,2012(64):129-137.
    [12]韩潇倩.细颗粒物对细胞的毒性研究[D].杭州:浙江工业大学,2016.Han Xiaoqian.Toxicity of Fine Particles to Cells[D].Hangzhou:Zhejiang University of Technology,2016.
    [13]Jiang W,Mashayekhi H,Xing B S.Bacterial toxicity comparison between nano-and micro-scaled oxide particles[J].Environmental Pollution,2009(157):1619-1625.
    [14]Heinlaan M,Ivask A,Blinova I,et al.Toxicity of nanosized and bulk ZnO,CuO and TiO2to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus[J].Chemosphere,2008(71):1308-1316.
    [15]Wang S T,Liu Z S,Wang W Q,et al.Fate and transformation of nanoparticles(NPs)in municipal wastewater treatment systems and effects of NPs on the biological treatment of wastewater:a review[J].RSC Adv,2017,7(59):37065-37075.
    [16]杨艺,张焕祯,刘俊峰.纳米颗粒在水环境中的团聚行为和毒性效应研究[J].环境工程,2016,34(9):17-21.Yang Yi,Zhang Huanzhen,Liu Junfeng.The aggregation behavior and toxic effect of nanoparticles in aquatic environment[J].Environmental Engineering,2016,34(9):17-21.
    [17]Joost U,Juganson K,Visnapuu M,et al.Photocatalytic antibacterial activity of nano-TiO2(anatase)-based thin films:effects on Escherichia coli cells and fatty acids[J].Journal of Photochemistry and Photobiology-B:Biology,2015(142):178-185.
    [18]张金洋.纳米氧化锌和二氧化钛的毒性效应及致毒机制探讨[D].上海:上海交通大学,2012.Zhang Jinyang.Studies on Toxic Effects of Nano-zinc Oxide and Titanium Dioxide and Their Mechanisms of Toxicity[D].Shanghai:Shanghai Jiaotong University,2012.
    [19]柴汉魁.四种金属氧化物纳米颗粒对农业土壤微生物的毒性研究[D].北京:北京科技大学,2017.Chai Hankui.The Toxic Effect Study of Four Metal Oxide Nanoparticles on Agricultural Soil Microorganism[D].Beijing:University of Science and Technology Beijing,2017.
    [20]Adams L K,Lyon D Y,Alvarez P J.Comparative eco-toxicity of nanoscale TiO2,SiO2and ZnO water suspensions[J].Water Research,2006,40(19):3527-3532.
    [21]Baek Y W,An Y J.Microbial toxicity of metal oxide nanoparticles(CuO,NiO,ZnO,and Sb2O3)to Escherichia coli,Bacillus subtilis,and Streptococcus aureus[J].The Science of the Total Environment,2011,409(8):1603-1608.
    [22]Kumar A,Pandey A K,Singh S S,et al.Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells[J].Chemosphere,2011,83(8):1124-1132.
    [23]Qayyum S,Oves M,Khan A U.Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles[J].PloS One,2017,12(8):e0181363.
    [24]Vijayakumar S,Malaikozhundan B,Shanthi S,et al.Control of biofilm forming clinically important bacteria by green synthesized ZnO nanoparticles and its ecotoxicity on Ceriodaphnia cornuta[J].Microbial Pathogenesis,2017(107):88-97.
    [25]Lin D H,Xing B S.Root uptake and phytotoxicity of ZnOnanoparticles[J].Environmental Science and Technology,2008,42(15):5580-5585.
    [26]李宁.奥奈达希瓦氏菌中氧化胁迫的调控:OxyR和OhrR调节子在应答过程中的交叉作用[D].杭州:浙江大学,2015.Li Ning.Regulation of Oxidative Stress in Shewanella oneidensis:Intertwined Roles of OxyR and OhrR Regulators in Response[D].Hangzhou:Zhejiang University,2015.
    [27]王琳,吴波,刘新奎.热化疗联合作用对人肺腺癌A549细胞生长及ROS、LDH表达的影响[J].医药论坛杂志,2011,32(17):3-5.Wang Lin,Wu Bo,Liu Xinkui.Synergistic effect of thermotherapy in combination with chemotherapy on lung tumor A549 growth and ROS,LDH expression[J].Journal of Medical Forum,2011,32(17):3-5.
    [28]Applerot G,Lipovsky A,Dror R,et al.Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS mediated cell injury[J].Advanced Functional Materials,2009,19(6):842-852.
    [29]Hajipour M J,Fromm K M,Ashkarran A A,et al.Antibacterial properties of nanoparticles[J].Trends Biotechnol,2012,30(10):499-511.
    [30]Sondi I,Salopek S B.Silver nanoparticles as antimicrobial agent:a case study on E.coli as a model for Gram-negative bacteria[J].Colloid and Interface Science,2004,275(1):177-182.
    [31]Li F F,Lei C Y,Shen Q P,et al.Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array[J].Nanoscale,2013,5(2):653-662.
    [32]Kasemets K,Ivask A,Dubourguier H C,et al.Toxicity of nanoparticles of ZnO,CuO and TiO2to yeast Saccharomyces cerevisiae[J].Toxicology in Vitro,2009,23(6):1116-1122.
    [33]华晶,袁晋,盛光遥.金属氧化物纳米颗粒在水环境中的团聚与沉降[J].环境科学与技术,2016,39(3):17-22.Hua Jing,Yuan Jin,Sheng Guangyao.Aggregation and sedimentation of metal oxides nanoparticles in aquatic environment[J].Environmental Science&Technology,2016,39(3):17-22.
    [34]潘涛,郭彩霞,金明华,等.纳米二氧化硅颗粒对HL-7702细胞黏附和迁移能力的影响[J].吉林大学学报:医学版,2015,41(4):732-736.Pan Tao,Guo Caixia,Jin Minghua,et al.Effects of SiO2nanoparticles on cell adhesion and migration of HL-7702cell[J].Journal of Jilin University:Medicine Edition,2015,41(4):732-736.
    [35]Wang Z,Liu S J,Ma J,et al.Silver nanoparticles induced RNA polymerase-silver binding and RNA transcription inhibition in erythroid progenitor cells[J].ACSnano,2013(7):4171-86.
    [36]Ahmad A,Wei Y,Syed F,et al.The effects of bacteriananoparticles interface on the antibacterial activity of green synthesized silver nanoparticles[J].Microbial Pathogenesis,2017(102):133-42.
    [37]Liu G Q,Wang D M,Wang J M,et al.Effect of ZnO particles on activated sludge:role of particle dissolution[J].The Science of the Total Environment,2011,409(14):2852-2857.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700